高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納

字號:

制定計劃明確學(xué)習(xí)目的,合理的學(xué)習(xí)計劃是推動我們主動學(xué)習(xí)和克服困難的內(nèi)在動力。以下是整理的《高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納》希望能夠幫助到大家。
    1.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇一
    1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
    2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。
    方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
    3、函數(shù)零點(diǎn)的求法:
    求函數(shù)的零點(diǎn):
    (1)(代數(shù)法)求方程的實(shí)數(shù)根;
    (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
    4、二次函數(shù)的零點(diǎn):
    二次函數(shù).
    1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn).
    2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn).
    3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
    2.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇二
    (1)不等關(guān)系
    感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
    (2)一元二次不等式
    ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
    ③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。
    (3)二元一次不等式組與簡單線性規(guī)劃問題
    ①從實(shí)際情境中抽象出二元一次不等式組。
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
    ③從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的證明過程。
    ②會用基本不等式解決簡單的(小)值問題。
    3.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇三
    1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
    2.二元一次不等式(組)的每一個解(x,y)作為點(diǎn)的坐標(biāo)對應(yīng)平面上的一個點(diǎn),二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個半平面(平面區(qū)域)。
    3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
    4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
    5.一個二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個平面,一般用特殊點(diǎn)代入二元一次不等式檢驗就可以判定,當(dāng)直線不過原點(diǎn)時常選原點(diǎn)檢驗,當(dāng)直線過原點(diǎn)時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義?!熬€定界,點(diǎn)定域”。
    6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。
    7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應(yīng)把邊界畫成虛線。
    8.若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
    9.從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:
    (1)根據(jù)題意,設(shè)出變量;
    (2)分析問題中的變量,并根據(jù)各個不等關(guān)系列出常量與變量x,y之間的不等式;
    (3)把各個不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
    4.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇四
    1.定義:
    用符號〉,=,〈號連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
    ②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
    ③不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    5.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇五
    函數(shù)奇偶性的常用結(jié)論:
    1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
    2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
    3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
    4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。
    5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
    6.高三上冊數(shù)學(xué)復(fù)習(xí)知識點(diǎn)歸納 篇六
    1、直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    2、直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點(diǎn)的直線的斜率公式:
    注意下面四點(diǎn):
    (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。