高一數(shù)學重點知識點必修二

字號:

高中數(shù)學知識比較多,高一數(shù)學必修二需要記憶的知識點原理也很多,數(shù)學知識結構圖能夠幫助同學們了解數(shù)學大體結構,更好的學習數(shù)學。為各位同學整理了《高一數(shù)學重點知識點必修二》,希望對你的學習有所幫助!
    1.高一數(shù)學重點知識點必修二 篇一
    解三角形
    (1)正弦定理和余弦定理
    掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
    (2)應用
    能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.
    數(shù)列
    (1)數(shù)列的概念和簡單表示法
    ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.
    ③能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系.
    2.高一數(shù)學重點知識點必修二 篇二
    指數(shù)函數(shù)
    指數(shù)與指數(shù)冪的運算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈.
    當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
    當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。
    注意:當是奇數(shù)時,當是偶數(shù)時,
    2.分數(shù)指數(shù)冪
    正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:
    0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
    指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
    3.高一數(shù)學重點知識點必修二 篇三
    1.函數(shù)的奇偶性
    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);
    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
    (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
    (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
    (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
    2.復合函數(shù)的有關問題
    (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
    (2)復合函數(shù)的單調(diào)性由“同增異減”判定;
    3.函數(shù)圖像(或方程曲線的對稱性)
    (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
    (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱,高中數(shù)學;
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
    4.高一數(shù)學重點知識點必修二 篇四
    函數(shù)的性質(zhì):
    函數(shù)的單調(diào)性、奇偶性、周期性
    單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
    判定方法有:定義法(作差比較和作商比較)
    導數(shù)法(適用于多項式函數(shù))
    復合函數(shù)法和圖像法。
    應用:比較大小,證明不等式,解不等式。
    奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
    f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
    判別方法:定義法,圖像法,復合函數(shù)法
    應用:把函數(shù)值進行轉化求解。
    周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
    其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
    應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
    5.高一數(shù)學重點知識點必修二 篇五
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
    直線和平面平行——沒有公共點
    直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
    直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
    直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。