高三數(shù)學必修二知識點筆記

字號:


    高考就像是人生的小舞臺,心有多大,舞臺就有多大。保持平常心,永不言棄,勇敢的搏一把,你一定可以實現(xiàn)自己的夢想!以下是高三頻道整理的《高三數(shù)學必修二知識點筆記》,希望對您有所幫助。
    1.高三數(shù)學必修二知識點筆記 篇一
    三角形中的三角函數(shù)
    (1)內角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余。銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方
    (2)正弦定理:(R為三角形外接圓的半徑)
    (3)余弦定理:常選用余弦定理鑒定三角形的類型
    2.高三數(shù)學必修二知識點筆記 篇二
    兩個變量的線性相關
    1、概念:
    (1)回歸直線方程
    (2)回歸系數(shù)
    2、最小二乘法
    3、直線回歸方程的應用
    (1)描述兩變量之間的依存關系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關系
    (2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
    (3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
    4、應用直線回歸的注意事項
    (1)做回歸分析要有實際意義;
    (2)回歸分析前,先作出散點圖;
    (3)回歸直線不要外延。
    3.高三數(shù)學必修二知識點筆記 篇三
    兩平面垂直
    兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
    兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
    兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平
    二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。
    4.高三數(shù)學必修二知識點筆記 篇四
    1、棱柱
    棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
    棱柱的性質
    (1)側棱都相等,側面是平行四邊形
    (2)兩個底面與平行于底面的截面是全等的多邊形
    (3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
    2、棱錐
    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
    棱錐的性質:
    (1)側棱交于一點。側面都是三角形
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
    3、正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質:
    (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個特殊的直角三角形
    a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
    5.高三數(shù)學必修二知識點筆記 篇五
    空間兩條直線只有三種位置關系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經(jīng)過該點的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
    2、若從有無公共點的角度看可分為兩類:
    (1)有且僅有一個公共點——相交直線;
    (2)沒有公共點——平行或異面
    直線和平面的位置關系:
    直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
    ①直線在平面內——有無數(shù)個公共點
    ②直線和平面相交——有且只有一個公共點
    直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
    6.高三數(shù)學必修二知識點筆記 篇六
    直線方程:
    1.點斜式:y-y0=k(x-x0)
    (x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標;y是因變量,直線上任意一點的縱坐標。
    2.斜截式:y=kx+b
    直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達式。
    3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
    如果x1=x2,y1=y2,那么兩點就重合了,相當于只有一個已知點了,這樣不能確定一條直線。
    如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
    如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
    4.截距式x/a+y/b=1
    對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
    5.一般式;Ax+By+C=0
    將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。