高二年級數(shù)學下冊知識點復習

字號:

在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。高二頻道為你整理了《高二年級數(shù)學下冊知識點復習》希望對你的學習有所幫助!
    1.高二年級數(shù)學下冊知識點復習
    有界性
    設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無XX。
    單調(diào)性
    設函數(shù)f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
    奇偶性
    設為一個實變量實值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
    幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變。
    奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
    設f(x)為一實變量實值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
    幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變。
    偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
    偶函數(shù)不可能是個雙射映射。
    連續(xù)性
    在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
    2.高二年級數(shù)學下冊知識點復習
    二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
    ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
    ③直二面角:平面角是直角的二面角叫直二面角。
    兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
    3.高二年級數(shù)學下冊知識點復習
    1.任意角
    (1)角的分類:
    ①按旋轉(zhuǎn)方向不同分為正角、負角、零角。
    ②按終邊位置不同分為象限角和軸線角。
    (2)終邊相同的角:
    終邊與角相同的角可寫成+k360(kZ)。
    (3)弧度制:
    ①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。
    ②規(guī)定:正角的弧度數(shù)為正數(shù),負角的弧度數(shù)為負數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。
    ③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關,僅與角的大小有關。
    ④弧度與角度的換算:360弧度;180弧度。
    ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.
    2.任意角的三角函數(shù)
    (1)任意角的三角函數(shù)定義:
    設是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù)。
    (2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。
    3.三角函數(shù)線
    設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。
    4.高二年級數(shù)學下冊知識點復習
    (1)總體和樣本:
    ①在統(tǒng)計學中,把研究對象的全體叫做總體.
    ②把每個研究對象叫做個體.
    ③把總體中個體的總數(shù)叫做總體容量.
    ④為了研究總體的有關性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
    (2)簡單隨機抽樣,也叫純隨機抽樣。
    就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
    (3)簡單隨機抽樣常用的方法:
    ①抽簽法
    ②隨機數(shù)表法
    ③計算機模擬法
    在簡單隨機抽樣的樣本容量設計中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對象群體中的每一個對象編號;
    ②準備抽簽的工具,實施抽簽;
    ③對樣本中的每一個個體進行測量或調(diào)查
    5.高二年級數(shù)學下冊知識點復習
    等腰直角三角形面積公式:
    S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
    面積公式
    若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
    S=ab/2。
    且由等腰直角三角形性質(zhì)可知:底邊c上的高h=c/2,則三角面積可表示為:
    S=ch/2=c2/4。
    等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
    反正弦函數(shù)的導數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。
    6.高二年級數(shù)學下冊知識點復習
    直線方程:
    1.點斜式:y-y0=k(x-x0)
    (x0,y0)是直線所通過的已知點的坐標,k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標;y是因變量,直線上任意一點的縱坐標。
    2.斜截式:y=kx+b
    直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達式。
    3.兩點式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
    如果x1=x2,y1=y2,那么兩點就重合了,相當于只有一個已知點了,這樣不能確定一條直線。
    如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
    如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
    4.截距式x/a+y/b=1
    對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
    5.一般式;Ax+By+C=0
    將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。