臨近高三,數(shù)學在考試中占的比分較大,將數(shù)學重要知識點做好總結,能夠提高自己的學習效率。為各位同學整理了《高二下學期數(shù)學知識點筆記整理》,希望對你的學習有所幫助!
1.高二下學期數(shù)學知識點筆記整理 篇一
不等式
對于含有參數(shù)的一元二次不等式解的討論
1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
2.高二下學期數(shù)學知識點筆記整理 篇二
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
3.高二下學期數(shù)學知識點筆記整理 篇三
分層抽樣:
當已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.
隨機抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點:
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進行抽樣時,在采用簡單隨機抽樣或系統(tǒng)抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應用較為廣泛。
4.高二下學期數(shù)學知識點筆記整理 篇四
等比數(shù)列求和公式
(1)等比數(shù)列:a(n+1)/an=q(n∈N)。
(2)通項公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項數(shù))
(4)性質(zhì):
①若m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.
③若m、n、q∈N,且m+n=2q,則am×an=aq^2
(5)"G是a、b的等比中項""G^2=ab(G≠0)".
(6)在等比數(shù)列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n項。
等比數(shù)列求和公式推導:Sn=a1+a2+a3+...+an(公比為q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。
5.高二下學期數(shù)學知識點筆記整理 篇五
等比數(shù)列性質(zhì)
(1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。
(5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
1.高二下學期數(shù)學知識點筆記整理 篇一
不等式
對于含有參數(shù)的一元二次不等式解的討論
1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
2.高二下學期數(shù)學知識點筆記整理 篇二
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
3.高二下學期數(shù)學知識點筆記整理 篇三
分層抽樣:
當已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.
隨機抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點:
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進行抽樣時,在采用簡單隨機抽樣或系統(tǒng)抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應用較為廣泛。
4.高二下學期數(shù)學知識點筆記整理 篇四
等比數(shù)列求和公式
(1)等比數(shù)列:a(n+1)/an=q(n∈N)。
(2)通項公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);
(3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項數(shù))
(4)性質(zhì):
①若m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.
③若m、n、q∈N,且m+n=2q,則am×an=aq^2
(5)"G是a、b的等比中項""G^2=ab(G≠0)".
(6)在等比數(shù)列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n項。
等比數(shù)列求和公式推導:Sn=a1+a2+a3+...+an(公比為q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。
5.高二下學期數(shù)學知識點筆記整理 篇五
等比數(shù)列性質(zhì)
(1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。
(5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。

