高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn)

字號:


    數(shù)學(xué)依舊是重難點(diǎn)科目,要學(xué)好數(shù)學(xué)不是一件容易的事,平常得多學(xué)多練才行。為各位同學(xué)整理了《高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn)》,希望對你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇一
    函數(shù)值域的求法:
    ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;
    ②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解
    ④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;
    ⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;
    ⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;
    ⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
    ⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
    2.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇二
    平行于同一條直線的兩條直線互相平行
    空間直線與直線之間的位置關(guān)系
    ①異面直線定義:不同在任何一個平面內(nèi)的兩條直線
    ②異面直線性質(zhì):既不平行,又不相交。
    ③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該點(diǎn)的直線是異面直線
    ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
    3.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇三
    (1)總體和樣本:
    ①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
    ②把每個研究對象叫做個體.
    ③把總體中個體的總數(shù)叫做總體容量.
    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
    (2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
    就是從總體中不加任何分組、劃類、排隊等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
    (3)簡單隨機(jī)抽樣常用的方法:
    ①抽簽法
    ②隨機(jī)數(shù)表法
    ③計算機(jī)模擬法
    在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對象群體中的每一個對象編號;
    ②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
    ③對樣本中的每一個個體進(jìn)行測量或調(diào)查
    4.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇四
    導(dǎo)數(shù)的應(yīng)用
    1.用導(dǎo)數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。
    2.生活中常見的函數(shù)優(yōu)化問題
    1)費(fèi)用、成本最省問題
    2)利潤、收益問題
    3)面積、體積最(大)問題
    5.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇五
    1.定義法:
    判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。
    2.轉(zhuǎn)換法:
    當(dāng)所給命題的充要條件不易判斷時,可對命題進(jìn)行等價裝換,例如改用其逆否命題進(jìn)行判斷。
    3.集合法
    在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:
    若A⊆B,則p是q的充分條件。
    若A⊇B,則p是q的必要條件。
    若A=B,則p是q的充要條件。
    若A⊈B,且B⊉A,則p是q的既不充分也不必要條件。
    6.高二數(shù)學(xué)下學(xué)期復(fù)習(xí)知識點(diǎn) 篇六
    向量公式:
    1.單位向量:單位向量a0=向量a/|向量a|
    2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
    3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
    4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)
    5.空間向量:同上推論(提示:向量a={x,y,z})
    6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2
    7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方