高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí)

字號:


    高一數(shù)學(xué)怎么鞏固復(fù)習(xí)呢?首先總結(jié)知識點,然后重點比較自己模糊與不清晰的地方,做幾道習(xí)題,要是不懂再去問老師。為各位同學(xué)整理了《高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí)》,希望對你的學(xué)習(xí)有所幫助!
    1.高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí) 篇一
    常用的有列舉法和描述法
    1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
    2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)
    3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個集合。
    2.高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí) 篇二
    函數(shù)的運用
    1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
    2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:
    方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
    3、函數(shù)零點的求法:
    求函數(shù)的零點:
    1(代數(shù)法)求方程的實數(shù)根;
    2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
    4、二次函數(shù)的零點:
    二次函數(shù).
    1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
    2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
    3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
    3.高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí) 篇三
    指數(shù)函數(shù)
    (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點。
    (8)顯然指數(shù)函數(shù)無_。
    4.高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí) 篇四
    冪函數(shù)
    定義
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域
    當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域
    性質(zhì)
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
    5.高一年級下學(xué)期數(shù)學(xué)知識點復(fù)習(xí) 篇五
    1.拋物線是軸對稱圖形。對稱軸為直線
    x=-b/2a。
    對稱軸與拋物線的交點為拋物線的頂點P。
    特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
    2.拋物線有一個頂點P,坐標為
    P(-b/2a,(4ac-b’2)/4a)
    當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b’2-4ac=0時,P在x軸上。
    3.二次項系數(shù)a決定拋物線的開口方向和大小。
    當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
    當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
    當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
    5.常數(shù)項c決定拋物線與y軸交點。
    拋物線與y軸交于(0,c)
    6.拋物線與x軸交點個數(shù)
    Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
    Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
    Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)