因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。高二頻道為你整理了《高二年級數(shù)學(xué)上學(xué)期知識點整理》,助你金榜題名!
1.高二年級數(shù)學(xué)上學(xué)期知識點整理
極值的定義:
(1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)
(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
極值的性質(zhì):
(1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;
(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;
(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;
(4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。
求函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x);
(2)求方程f′(x)=0的根;
(3)用函數(shù)的導(dǎo)數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則f(x)在這個根處無極值。
2.高二年級數(shù)學(xué)上學(xué)期知識點整理
(1)算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
(2)算法的特點:
①有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
②確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
3.高二年級數(shù)學(xué)上學(xué)期知識點整理
1、科學(xué)記數(shù)法:把一個數(shù)字寫成的形式的記數(shù)方法。
2、統(tǒng)計圖:形象地表示收集到的數(shù)據(jù)的圖。
3、扇形統(tǒng)計圖:用圓和扇形來表示總體和部分的關(guān)系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計圖中,每個部分占總體的百分比等于該部分對應(yīng)的扇形圓心角與360°的比。
4、條形統(tǒng)計圖:清楚地表示出每個項目的具體數(shù)目。
5、折線統(tǒng)計圖:清楚地反映事物的變化情況。
6、確定事件包括:肯定會發(fā)生的必然事件和一定不會發(fā)生的不可能事件。
7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
9、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
10、游戲雙方公平:雙方獲勝的可能性相同。
11、算數(shù)平均數(shù):簡稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)
12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計算簡單,受極端值得影響較小。
13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關(guān)系不大。
14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫了一組數(shù)據(jù)的“平均水平”。
15、普查:為了一定目的對考察對象進(jìn)行全面調(diào)查;考察對象全體叫總體,每個考察對象叫個體。
16、抽樣調(diào)查:從總體中抽取部分個體進(jìn)行調(diào)查;從總體中抽出的一部分個體叫樣本(有代表性)。
17、隨機調(diào)查:按機會均等的原則進(jìn)行調(diào)查,總體中每個個體被調(diào)查的概率相同。
18、頻數(shù):每次對象出現(xiàn)的次數(shù)。
19、頻率:每次對象出現(xiàn)的次數(shù)與總次數(shù)的比值。
20、級差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫數(shù)據(jù)的離散程度。
21、方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫數(shù)據(jù)的離散程度。
21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根刻畫數(shù)據(jù)的離散程度。
23、一組數(shù)據(jù)的級差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。
24、利用樹狀圖或表格方便求出某事件發(fā)生的概率。
25、兩個對比圖像中,坐標(biāo)軸上同一單位長度表示的意義一致,縱坐標(biāo)從0開始畫。
4.高二年級數(shù)學(xué)上學(xué)期知識點整理
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
平方關(guān)系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
積的關(guān)系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
5.高二年級數(shù)學(xué)上學(xué)期知識點整理
1、幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。
2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長度(面積或體積);
試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)
3、幾何概型的特點:
1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;
2)每個基本事件出現(xiàn)的可能性相等
4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。
6.高二年級數(shù)學(xué)上學(xué)期知識點整理
(1)總體和樣本
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
②隨機數(shù)表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
②準(zhǔn)備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進(jìn)行測量或調(diào)查