高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理

字號(hào):

知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。哪些知識(shí)點(diǎn)能夠幫助到我們呢?為各位同學(xué)整理了《高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理 篇一
    1.多面體的結(jié)構(gòu)特征
    (1)棱柱的上下底面平行,側(cè)棱都平行且長(zhǎng)度相等,上底面和下底面是全等的多邊形.
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形.
    (3)棱臺(tái)可由平行于棱錐底面的'平面截棱錐得到,其上下底面的兩個(gè)多邊形相似.
    2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
    (1)圓柱可以由矩形繞其一邊所在直線旋轉(zhuǎn)得到.
    (2)圓錐可以由直角三角形繞其一條直角邊所在直線旋轉(zhuǎn)得到.
    (3)圓臺(tái)可以由直角梯形繞直角腰所在直線或等腰梯形繞上下底中點(diǎn)的連線旋轉(zhuǎn)得到,也可由平行于圓錐底面的平面截圓錐得到.
    (4)球可以由半圓或圓繞其直徑旋轉(zhuǎn)得到.
    3.空間幾何體的三視圖
    空間幾何體的三視圖是用正投影得到,這種投影下與投影面平行的平面圖形留下的影子與平面圖形的形狀和大小是完全相同的,三視圖包括主視圖、左視圖、俯視圖.
    4.空間幾何體的直觀圖
    (1)在已知圖形中建立直角坐標(biāo)系xOy.畫直觀圖時(shí),它們分別對(duì)應(yīng)x軸和y軸,兩軸交于點(diǎn)O,使xOy=45,它們確定的平面表示水平平面;
    (2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成平行于x軸和y軸的線段;
    (3)已知圖形中平行于x軸的線段,在直觀圖中保持原長(zhǎng)度不變;平行于y軸的線段,長(zhǎng)度為原來的.
    2.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理 篇二
    定義:
    x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
    范圍:
    傾斜角的取值范圍是0°≤α<180°。
    理解:
    (1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
    (2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
    意義:
    ①直線的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;
    ②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
    ③傾斜角相同,未必表示同一條直線。
    公式:
    k=tanα
    k>0時(shí)α∈(0°,90°)
    k<0時(shí)α∈(90°,180°)
    k=0時(shí)α=0°
    當(dāng)α=90°時(shí)k不存在
    ax+by+c=0(a≠0)傾斜角為A,
    則tanA=-a/b,A=arctan(-a/b)
    當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直
    3.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理 篇三
    復(fù)數(shù)定義
    我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
    復(fù)數(shù)表達(dá)式
    虛數(shù)是與任何事物沒有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
    a=a+ia為實(shí)部,i為虛部
    復(fù)數(shù)運(yùn)算法則
    加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
    減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
    復(fù)數(shù)與幾何
    ①幾何形式
    復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
    ②向量形式
    復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR>    ③三角形式
    復(fù)數(shù)z=a+bi化為三角形式
    4.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理 篇四
    指數(shù)函數(shù)
    指數(shù)與指數(shù)冪的運(yùn)算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
    當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
    當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
    注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
    2.分?jǐn)?shù)指數(shù)冪
    正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
    0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
    指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
    5.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)梳理 篇五
    集合與元素
    一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。
    例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來說,是它的一個(gè)元素;而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。
    班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對(duì)的。
    解集合問題的關(guān)鍵
    解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;
    比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。