學(xué)任何一門功課,都不能只有三分鐘熱度,而要一鼓作氣,天天堅持,這樣才能取得好成績。為各位同學(xué)整理了《高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記》,希望對你的學(xué)習(xí)有所幫助!
1.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇一
算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
2.算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
(4)不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
2.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇二
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
3.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇三
集合與元素
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;
而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關(guān)鍵
弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;
比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
4.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇四
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學(xué);
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱。
5.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇五
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
k分別為正和負(fù)(2和-2)時的函數(shù)圖像。
當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
1.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇一
算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
2.算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
(4)不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
2.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇二
多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
3.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇三
集合與元素
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個集合,是由幾十個和你同齡的同學(xué)組成的集合,你相對于這個班級集合來說,是它的一個元素;
而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關(guān)鍵
弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;
比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
4.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇四
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學(xué);
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱。
5.高一數(shù)學(xué)上冊知識點復(fù)習(xí)筆記 篇五
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
k分別為正和負(fù)(2和-2)時的函數(shù)圖像。
當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。