高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

字號(hào):

學(xué)習(xí)任何一門知識(shí)點(diǎn)都要學(xué)會(huì)對(duì)該知識(shí)點(diǎn)進(jìn)行總結(jié),這樣可以檢查學(xué)生對(duì)知識(shí)的真正掌握程度以及方便學(xué)生日后的復(fù)習(xí)。為各位同學(xué)整理了《高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇一
    求函數(shù)的定義域時(shí),一般遵循以下原則:
    ①f(x)是整式時(shí),定義域是全體實(shí)數(shù).
    ②f(x)是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù).
    ③f(x)是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合
    ④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1.
    ⑥零(負(fù))指數(shù)冪的底數(shù)不能為零.
    ⑦若f(x)是由有限個(gè)基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時(shí),則其定義域一般是各基本初等函數(shù)的定義域的交集.
    ⑧對(duì)于求復(fù)合函數(shù)定義域問題,一般步驟是:若已知f(x)的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域應(yīng)由不等式a≤g(x)≤b解出.
    ⑨對(duì)于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對(duì)字母參數(shù)進(jìn)行分類討論.
    ⑩由實(shí)際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實(shí)際意義.
    2.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇二
    等比數(shù)列求和公式
    (1)等比數(shù)列:a(n+1)/an=q(n∈n)。
    (2)通項(xiàng)公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);
    (3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))
    (4)性質(zhì):
    ①若m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq;
    ②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.
    ③若m、n、q∈n,且m+n=2q,則am×an=aq^2
    (5)"g是a、b的等比中項(xiàng)""g^2=ab(g≠0)".
    (6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零.
    注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。
    等比數(shù)列求和公式推導(dǎo):sn=a1+a2+a3+...+an(公比為q)q·sn=a1·q+a2·q+a3·q+...+an·q=a2+a3+a4+...+a(n+1)sn-q·sn=a1-a(n+1)(1-q)sn=a1-a1·q^nsn=(a1-a1·q^n)/(1-q)sn=(a1-an·q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k·(1-q^n)~y=k·(1-a^x)。
    3.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇三
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
    性質(zhì):
    對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
    排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
    排除了為0這種可能,即對(duì)于x
    排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
    4.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇四
    兩平面垂直
    兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥
    兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
    兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
    二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
    5.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇五
    求函數(shù)值域
    (1)、觀察法:通過對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;
    (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
    (3)、判別式法:
    (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;
    (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;
    (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;
    (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
    (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
    (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。
    6.高一上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn) 篇六
    數(shù)列的定義
    按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
    (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
    (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1.
    (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
    (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.