高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)

字號(hào):

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒(méi)有社會(huì)經(jīng)驗(yàn)的學(xué)生來(lái)說(shuō),無(wú)疑是個(gè)困難的選擇。如何度過(guò)這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來(lái)著手!高三頻道為各位同學(xué)整理了《高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)》,希望你努力學(xué)習(xí),圓金色六月夢(mèng)!
    1.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    1.定義:
    用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
    ②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
    ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
    3.分類(lèi):
    ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問(wèn)題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    2.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    降冪公式
    sin2(α)=(1-cos(2α))/2=versin(2α)/2
    cos2(α)=(1+cos(2α))/2=covers(2α)/2
    tan2(α)=(1-cos(2α))/(1+cos(2α))
    萬(wàn)能公式:
    sinα=2tan(α/2)/[1+tan2(α/2)]
    cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
    tanα=2tan(α/2)/[1-tan2(α/2)]
    積化和差公式:
    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
    和差化積公式:
    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
    推導(dǎo)公式
    tanα+cotα=2/sin2α
    tanα-cotα=-2cot2α
    1+cos2α=2cos2α
    1-cos2α=2sin2α
    1+sinα=(sinα/2+cosα/2)2
    3.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    (1)不等關(guān)系
    感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
    (2)一元二次不等式
    ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。
    ②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題
    ①?gòu)膶?shí)際情境中抽象出二元一次不等式組。
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。
    ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的證明過(guò)程。
    ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題。
    4.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    系統(tǒng)抽樣
    定義
    當(dāng)總體中的個(gè)體數(shù)較多時(shí),采用簡(jiǎn)單隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。
    步驟
    一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:
    (1)先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門(mén)牌號(hào)等;
    (2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;
    (3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);
    (4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獲取整個(gè)樣本。
    5.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    直線、平面、簡(jiǎn)單多面體
    1.計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算
    2.計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解.注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線在平面上射影為角的平分線.
    3.空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用.注意:書(shū)寫(xiě)證明過(guò)程需規(guī)范.
    4.直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì).
    如長(zhǎng)方體中:對(duì)角線長(zhǎng),棱長(zhǎng)總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),
    如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心.
    5.求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等.注意:補(bǔ)形:三棱錐三棱柱平行六面體
    6.多面體是由若干個(gè)多邊形圍成的幾何體.棱柱和棱錐是特殊的多面體.
    正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體.
    7.球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式.它們都是球半徑及的函數(shù).
    6.高三必修三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)
    數(shù)列
    1.數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系
    2.等差數(shù)列中
    (1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.
    (2)也成等差數(shù)列.
    (3)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列.
    (4)仍成等差數(shù)列.
    (5)“首正”的遞等差數(shù)列中,前項(xiàng)和的值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;
    (6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和-偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng).
    (7)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),??紤]選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.
    (8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法