高二數(shù)學(xué)必修二知識點筆記梳理

字號:


    在我們的學(xué)生時期,大家都沒少背知識點吧?知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。為各位同學(xué)整理了《高二數(shù)學(xué)必修二知識點筆記梳理》,希望對你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)必修二知識點筆記梳理 篇一
    數(shù)列
    (1)數(shù)列的'概念和簡單表示法
    ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.
    ③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
    2.高二數(shù)學(xué)必修二知識點筆記梳理 篇二
    概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
    如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
    (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.
    3.高二數(shù)學(xué)必修二知識點筆記梳理 篇三
    二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.
    ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
    ③直二面角:平面角是直角的二面角叫直二面角.
    兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
    4.高二數(shù)學(xué)必修二知識點筆記梳理 篇四
    空間中的平行問題
    (1)直線與平面平行的判定及其性質(zhì)
    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
    線線平行線面平行
    線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
    那么這條直線和交線平行.線面平行線線平行
    (2)平面與平面平行的判定及其性質(zhì)
    兩個平面平行的判定定理
    (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
    (線面平行→面面平行),
    (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.
    (線線平行→面面平行),
    (3)垂直于同一條直線的兩個平面平行,
    兩個平面平行的性質(zhì)定理
    (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)
    (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)
    5.高二數(shù)學(xué)必修二知識點筆記梳理 篇五
    一、平面的基本性質(zhì)與推論
    1、平面的基本性質(zhì):
    公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);
    公理2:過不在一條直線上的三點,有且只有一個平面;
    公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
    2、空間點、直線、平面之間的位置關(guān)系:
    直線與直線-平行、相交、異面;
    直線與平面-平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
    平面與平面-平行、相交。
    3、異面直線:
    平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);
    所成的角范圍(0,90】度(平移法,作平行線相交得到夾角或其補角);
    兩條直線不是異面直線,則兩條直線平行或相交(反證);
    異面直線不同在任何一個平面內(nèi)。
    求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
    二、空間中的平行關(guān)系
    1、直線與平面平行(核心)
    定義:直線和平面沒有公共點
    判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
    性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
    2、平面與平面平行
    定義:兩個平面沒有公共點
    判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
    性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
    3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
    三、空間中的垂直關(guān)系
    1、直線與平面垂直
    定義:直線與平面內(nèi)任意一條直線都垂直
    判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
    性質(zhì):垂直于同一直線的兩平面平行
    推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
    直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
    2、平面與平面垂直
    定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
    判定:一個平面過另一個平面的垂線,則這兩個平面垂直
    性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直