高三數(shù)學(xué)重要知識點

字號:

要是人人都有一種敢于面對學(xué)習(xí)方面的困難的話,就一定會進步的,大家應(yīng)該隨著自己的目標(biāo)去奮斗,向著一個目標(biāo)前進。以下是為大家精心整理的《高三數(shù)學(xué)重要知識點》,歡迎大家閱讀。
    1.高三數(shù)學(xué)重要知識點 篇一
    1、數(shù)列的定義、分類與通項公式
    (1)數(shù)列的定義:
    ①數(shù)列:按照一定順序排列的一列數(shù)。
    ②數(shù)列的項:數(shù)列中的每一個數(shù)。
    (2)數(shù)列的分類:
    分類標(biāo)準(zhǔn)類型滿足條件
    項數(shù)有窮數(shù)列項數(shù)有限
    無窮數(shù)列項數(shù)無限
    項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N
    遞減數(shù)列an+1
    常數(shù)列an+1=an
    (3)數(shù)列的通項公式:
    如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式。
    2、數(shù)列的遞推公式
    如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式。
    3、對數(shù)列概念的理解
    (1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性。因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列。
    (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別。
    4、數(shù)列的函數(shù)特征
    數(shù)列是一個定義域為正整數(shù)集N(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N)。
    2.高三數(shù)學(xué)重要知識點 篇二
    一、求動點的軌跡方程的基本步驟
    1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
    2、寫出點M的集合;
    3、列出方程=0;
    4、化簡方程為最簡形式;
    5、檢驗。
    二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
    1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3、相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
    4、參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    直譯法:求動點軌跡方程的一般步驟
    ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
    ②設(shè)點——設(shè)軌跡上的任一點P(x,y);
    ③列式——列出動點p所滿足的關(guān)系式;
    ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
    ⑤證明——證明所求方程即為符合條件的動點軌跡方程。
    3.高三數(shù)學(xué)重要知識點 篇三
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
    實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
    即:①任何一個集合是它本身的子集。A(A
    ②真子集:如果A(B,且A(B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果A(B,B(C,那么A(C
    ④如果A(B同時B(A那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
    有n個元素的集合,含有2n個子集,2n-1個真子集
    4.高三數(shù)學(xué)重要知識點 篇四
    1.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);
    2.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=f(x),那么f(x)為偶函數(shù);
    3.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;
    4.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對稱。
    5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
    6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).
    5.高三數(shù)學(xué)重要知識點 篇五
    1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
    2.判定兩個平面平行的方法:
    (1)根據(jù)定義--證明兩平面沒有公共點;
    (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
    (3)證明兩平面同垂直于一條直線。
    3.兩個平面平行的主要性質(zhì):
    (1)由定義知:“兩平行平面沒有公共點”;
    (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
    (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
    (5)夾在兩個平行平面間的平行線段相等;
    (6)經(jīng)過平面外一點只有一個平面和已知平面平行。