高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記

字號:

在平時的學(xué)習(xí)和考試中同學(xué)們要善于總結(jié)知識點(diǎn),這樣有助于幫助同學(xué)們學(xué)好數(shù)學(xué)。為各位同學(xué)整理了《高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記》,希望對你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記 篇一
    簡單隨機(jī)抽樣的定義:
    一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。
    簡單隨機(jī)抽樣的特點(diǎn):
    (1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為
    (2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個抽取,且各個個體被抽到的概率相等;
    (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
    (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽??;它是一種等概率抽樣
    簡單抽樣常用方法:
    (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法。
    (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率。
    2.高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記 篇二
    函數(shù)的性質(zhì)
    函數(shù)的單調(diào)性、奇偶性、周期性
    單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
    判定方法有:定義法(作差比較和作商比較)
    導(dǎo)數(shù)法(適用于多項式函數(shù))
    復(fù)合函數(shù)法和圖像法。
    應(yīng)用:比較大小,證明不等式,解不等式。
    奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
    判別方法:定義法,圖像法,復(fù)合函數(shù)法
    應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
    周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
    其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
    應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
    3.高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記 篇三
    平面與平面平行的判定及其性質(zhì)
    兩個平面平行的判定定理
    (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
    (線面平行→面面平行),
    (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。
    (線線平行→面面平行),
    (3)垂直于同一條直線的兩個平面平行,
    兩個平面平行的性質(zhì)定理
    (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
    (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
    4.高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記 篇四
    1、幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。
    2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長度(面積或體積);
    試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)
    3、幾何概型的特點(diǎn):
    1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;
    2)每個基本事件出現(xiàn)的可能性相等、
    4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。
    5.高二數(shù)學(xué)下冊知識點(diǎn)歸納筆記 篇五
    等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
    面積公式
    若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
    S=ab/2。
    且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
    S=ch/2=c2/4。
    等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。