高一下期數學知識點歸納

字號:

高一數學必修一的學習,需要同學們對知識點進行總結,這樣會很快提高成績。為各位同學整理了《高一下期數學知識點歸納》,希望對你的學習有所幫助!
    1.高一下期數學知識點歸納 篇一
    1、拋物線是軸對稱圖形。對稱軸為直線
    x=—b/2a。
    對稱軸與拋物線的交點為拋物線的頂點P。
    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
    2、拋物線有一個頂點P,坐標為
    P(—b/2a,(4ac—b’2)/4a)
    當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。
    3、二次項系數a決定拋物線的開口方向和大小。
    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4、一次項系數b和二次項系數a共同決定對稱軸的位置。
    當a與b同號時(即ab>0),對稱軸在y軸左;
    當a與b異號時(即ab<0),對稱軸在y軸右。
    5、常數項c決定拋物線與y軸交點。
    拋物線與y軸交于(0,c)
    6、拋物線與x軸交點個數
    Δ=b’2—4ac>0時,拋物線與x軸有2個交點。
    Δ=b’2—4ac=0時,拋物線與x軸有1個交點。
    Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)
    2.高一下期數學知識點歸納 篇二
    【公式一】
    設α為任意角,終邊相同的角的同一三角函數的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α與-α的三角函數值之間的關系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α與α的三角函數值之間的關系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    3.高一下期數學知識點歸納 篇三
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    4.高一下期數學知識點歸納 篇四
    數列
    (1)數列的概念和簡單表示法
    ①了解數列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    ②了解數列是自變量為正整數的一類函數.
    (2)等差數列、等比數列
    ①理解等差數列、等比數列的概念.
    ②掌握等差數列、等比數列的通項公式與前項和公式.
    ③能在具體的問題情境中,識別數列的等差關系或等比關系,并能用有關知識解決相應的問題.
    ④了解等差數列與一次函數、等比數列與指數函數的關系.
    5.高一下期數學知識點歸納 篇五
    空間兩條直線只有三種位置關系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
    2、若從有無公共點的角度看可分為兩類:
    (1)有且僅有一個公共點——相交直線;
    (2)沒有公共點——平行或異面
    直線和平面的位置關系:
    直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行
    ①直線在平面內——有無數個公共點
    ②直線和平面相交——有且只有一個公共點
    直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。