高三年級數(shù)學上學期知識點

字號:


    奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學習,廢寢忘食一點也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三年級數(shù)學上學期知識點》供大家參考,歡迎閱讀!
    1.高三年級數(shù)學上學期知識點
    數(shù)列的定義
    按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.
    (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
    (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….。
    (3)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.
    (4)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
    2.高三年級數(shù)學上學期知識點
    1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
    2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。
    3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。
    4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
    5.一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
    6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。
    7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。
    8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
    9.從實際問題中抽象出二元一次不等式(組)的步驟是:
    (1)根據(jù)題意,設(shè)出變量;
    (2)分析問題中的變量,并根據(jù)各個不等關(guān)系列出常量與變量x,y之間的不等式;
    (3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
    3.高三年級數(shù)學上學期知識點
    復數(shù)的概念:
    形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
    復數(shù)的表示:
    復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
    復數(shù)的幾何意義:
    (1)復平面、實軸、虛軸:
    點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
    (2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應關(guān)系,即
    這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
    這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
    復數(shù)的模:
    復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
    虛數(shù)單位i:
    (1)它的平方等于-1,即i2=-1;
    (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
    (3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
    (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
    復數(shù)模的性質(zhì):
    復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
    對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
    4.高三年級數(shù)學上學期知識點
    不等式的解集:
    ①能使不等式成立的未知數(shù)的值,叫做不等式的解。
    ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
    ③求不等式解集的過程叫做解不等式。
    不等式的判定:
    ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
    ②在不等式“a>b”或“a
    ③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
    ④在列不等式時,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。
    5.高三年級數(shù)學上學期知識點
    (1)棱柱:
    定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
    分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。
    表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱
    幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
    (2)棱錐
    定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體
    分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等
    表示:用各頂點字母,如五棱錐
    幾何特征:側(cè)面、對角面都是三角形;平行于底面的`截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
    (3)棱臺:
    定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
    分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等
    表示:用各頂點字母,如五棱臺
    幾何特征:
    ①上下底面是相似的平行多邊形
    ②側(cè)面是梯形
    ③側(cè)棱交于原棱錐的頂點
    (4)圓柱:
    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
    幾何特征:
    ①底面是全等的圓;
    ②母線與軸平行;
    ③軸與底面圓的半徑垂直;
    ④側(cè)面展開圖是一個矩形。
    (5)圓錐:
    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
    幾何特征:
    ①底面是一個圓;
    ②母線交于圓錐的頂點;
    ③側(cè)面展開圖是一個扇形。
    (6)圓臺:
    定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
    幾何特征:
    ①上下底面是兩個圓;
    ②側(cè)面母線交于原圓錐的頂點;
    ③側(cè)面展開圖是一個弓形。
    (7)球體:
    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:
    ①球的截面是圓;
    ②球面上任意一點到球心的距離等于半徑。
    6.高三年級數(shù)學上學期知識點
    1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
    2、判定兩個平面平行的方法:
    (1)根據(jù)定義——證明兩平面沒有公共點;
    (2)判定定理——證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
    (3)證明兩平面同垂直于一條直線。
    3、兩個平面平行的主要性質(zhì):
    (1)由定義知:“兩平行平面沒有公共點”;
    (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
    (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
    (5)夾在兩個平行平面間的平行線段相等;
    (6)經(jīng)過平面外一點只有一個平面和已知平面平行。