高二年級數(shù)學(xué)上冊考點復(fù)習(xí)

字號:

在學(xué)習(xí)新知識的同時還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。為各位同學(xué)整理了《高二年級數(shù)學(xué)上冊考點復(fù)習(xí)》,希望對你的學(xué)習(xí)有所幫助!
    1.高二年級數(shù)學(xué)上冊考點復(fù)習(xí) 篇一
    平方關(guān)系:
    sin^2α+cos^2α=1
    1+tan^2α=sec^2α
    1+cot^2α=csc^2α
    積的關(guān)系:
    sinα=tanα×cosα
    cosα=cotα×sinα
    tanα=sinα×secα
    cotα=cosα×cscα
    secα=tanα×cscα
    cscα=secα×cotα
    倒數(shù)關(guān)系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    商的關(guān)系:
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    2.高二年級數(shù)學(xué)上冊考點復(fù)習(xí) 篇二
    (1)算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
    (2)算法的特點:
    ①有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
    ②確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
    ③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
    ④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
    ⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
    3.高二年級數(shù)學(xué)上冊考點復(fù)習(xí) 篇三
    1.幾何概型的定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。
    2.幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長度(面積或體積);
    試驗的全部結(jié)果所構(gòu)成的區(qū)域長度(面積或體積)
    3.幾何概型的特點:
    1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;
    2)每個基本事件出現(xiàn)的可能性相等.
    4.幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結(jié)果是可數(shù)的;而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度(或面積、體積等)有關(guān),即試驗結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結(jié)果都具有等可能性,這是二者的共性。
    4.高二年級數(shù)學(xué)上冊考點復(fù)習(xí) 篇四
    判斷函數(shù)零點個數(shù)的常用方法
    1、解方程法:
    令f(x)=0,如果能求出解,則有幾個解就有幾個零點。
    2、零點存在性定理法:
    利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。
    3、數(shù)形結(jié)合法:
    轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。
    已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法
    1、直接法:
    直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
    2、分離參數(shù)法:
    先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
    3、數(shù)形結(jié)合法:
    先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
    5.高二年級數(shù)學(xué)上冊考點復(fù)習(xí) 篇五
    分層抽樣
    先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
    兩種方法
    1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
    2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
    3.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
    分層標準
    (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
    (2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
    (3)以那些有明顯分層區(qū)分的變量作為分層變量。
    分層的比例問題
    (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
    (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實際的比例結(jié)構(gòu)。