高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納

字號:


    隨著考試的來臨,做好每一個(gè)科目的復(fù)習(xí)是非常重要的。為各位同學(xué)整理了《高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納》,希望對你的學(xué)習(xí)有所幫助!
    1.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇一
    (1)線線、面面、線面垂直的定義
    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
    ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直。
    ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直。
    (2)垂直關(guān)系的判定和性質(zhì)定理
    ①線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
    ②面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
    2.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇二
    角的度量:度量角的大小,可用“度”作為度量單位。把一個(gè)圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
    角的分類:
    (1)銳角:小于直角的角叫做銳角
    (2)直角:平角的一半叫做直角
    (3)鈍角:大于直角而小于平角的角
    (4)平角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終止位置和起始位置成一直線時(shí),所成的角叫做平角。
    (5)周角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終邊和始邊重合時(shí),所成的角叫做周角。
    (6)周角、平角、直角的關(guān)系是:l周角=2平角=4直角=360°
    3.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇三
    1、直線方程形式
    一般式:Ax+By+C=0(AB≠0)
    斜截式:y=kx+b(k是斜率b是x軸截距)
    點(diǎn)斜式:y-y1=k(x-x1)(直線過定點(diǎn)(x1,y1))
    兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(diǎn)(x1,y1),(x2,y2))
    截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
    做題過程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
    在與圓及圓錐曲線結(jié)合的過程中,還要用到點(diǎn)到直線距離公式。
    2、直線方程的局限性
    各種不同形式的直線方程的局限性:
    (1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;
    (2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;
    (3)截距式不能表示與坐標(biāo)軸平行或過原點(diǎn)的直線;
    (4)直線方程的一般式中系數(shù)A、B不能同時(shí)為零。
    4.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇四
    空間兩條直線只有三種位置關(guān)系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp、空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp、空間向量法
    2、若從有無公共點(diǎn)的角度看可分為兩類:
    (1)有且僅有一個(gè)公共點(diǎn)——相交直線;
    (2)沒有公共點(diǎn)——平行或異面
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
    ②直線和平面相交——有且只有一個(gè)公共點(diǎn)
    直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
    5.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇五
    方程的根與函數(shù)的零點(diǎn)
    1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
    2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。
    3、函數(shù)零點(diǎn)的求法:
    (1)(代數(shù)法)求方程的實(shí)數(shù)根;
    (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。
    4、二次函數(shù)的零點(diǎn):
    (1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
    (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
    (3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。
    6.高一數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)歸納 篇六
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
    13、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)