高三年級數(shù)學(xué)知識點總結(jié)

字號:

與高一高二不同之處在于,此時復(fù)習(xí)力學(xué)部分知識是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時需要進(jìn)行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。高三頻道為你精心準(zhǔn)備了《高三年級數(shù)學(xué)知識點總結(jié)》助你金榜題名!
    1.高三年級數(shù)學(xué)知識點總結(jié)
    判別式
    b2-4ac=0注:方程有兩個相等的實根
    b2-4ac>0注:方程有兩個不等的實根
    b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根
    三角函數(shù)公式
    兩角和公式
    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    倍角公式
    tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
    半角公式
    sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
    cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
    tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
    ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
    和差化積
    2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
    2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
    sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
    tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
    ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
    2.高三年級數(shù)學(xué)知識點總結(jié)
    一次函數(shù)的定義
    一次函數(shù),也作線性函數(shù),在x,y坐標(biāo)軸中可以用一條直線表示,當(dāng)一次函數(shù)中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。
    函數(shù)的表示方法
    列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。
    解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。
    圖象法:形象直觀,但只能近似地表達(dá)兩個變量之間的函數(shù)關(guān)系。
    一次函數(shù)的性質(zhì)
    一般地,形如y=kx+b(k,b是常數(shù),且k≠0),那么y叫做x的一次函數(shù),當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)
    注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為0)
    a)k不為0
    b)x的指數(shù)是1
    c)b取任意實數(shù)
    一次函數(shù)y=kx+b的圖像是經(jīng)過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當(dāng)b>0時,向上平移;b<0時,向下平移)
    3.高三年級數(shù)學(xué)知識點總結(jié)
    (1)先看“充分條件和必要條件”
    當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
    但為什么說q是p的必要條件呢?
    事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
    (2)再看“充要條件”
    若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q
    (3)定義與充要條件
    數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
    顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
    “充要條件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。
    (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
    4.高三年級數(shù)學(xué)知識點總結(jié)
    函數(shù)的周期性
    (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
    5.高三年級數(shù)學(xué)知識點總結(jié)
    1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
    2、判定兩個平面平行的方法:
    (1)根據(jù)定義——證明兩平面沒有公共點;
    (2)判定定理——證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;
    (3)證明兩平面同垂直于一條直線。
    3、兩個平面平行的主要性質(zhì):
    (1)由定義知:“兩平行平面沒有公共點”;
    (2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;
    (3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
    (5)夾在兩個平行平面間的平行線段相等;
    (6)經(jīng)過平面外一點只有一個平面和已知平面平行。