高三年級上冊數(shù)學知識點總結(jié)

字號:


    高三學生很快就會面臨繼續(xù)學業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經(jīng)驗的學生來說,無疑是個困難的選擇。如何度過這重要又緊張的一年,我們可以從提高學習效率來著手!高三頻道為各位同學整理了《高三年級上冊數(shù)學知識點總結(jié)》,希望你努力學習,圓金色六月夢!
    1.高三年級上冊數(shù)學知識點總結(jié)
    1、數(shù)列的定義、分類與通項公式
    (1)數(shù)列的定義:
    ①數(shù)列:按照一定順序排列的一列數(shù)。
    ②數(shù)列的項:數(shù)列中的每一個數(shù)。
    (2)數(shù)列的分類:
    分類標準類型滿足條件
    項數(shù)有窮數(shù)列項數(shù)有限
    無窮數(shù)列項數(shù)無限
    項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N
    遞減數(shù)列an+1
    常數(shù)列an+1=an
    (3)數(shù)列的通項公式:
    如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式。
    2、數(shù)列的遞推公式
    如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式。
    3、對數(shù)列概念的理解
    (1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性。因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列。
    (2)數(shù)列中的數(shù)可以重復出現(xiàn),而集合中的元素不能重復出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別。
    4、數(shù)列的函數(shù)特征
    數(shù)列是一個定義域為正整數(shù)集N(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應的函數(shù)解析式,即f(n)=an(n∈N)。
    2.高三年級上冊數(shù)學知識點總結(jié)
    一、求動點的軌跡方程的基本步驟
    1、建立適當?shù)淖鴺讼?,設出動點M的坐標;
    2、寫出點M的集合;
    3、列出方程=0;
    4、化簡方程為最簡形式;
    5、檢驗。
    二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
    1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3、相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
    4、參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    直譯法:求動點軌跡方程的一般步驟
    ①建系——建立適當?shù)淖鴺讼担?BR>    ②設點——設軌跡上的任一點P(x,y);
    ③列式——列出動點p所滿足的關(guān)系式;
    ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
    ⑤證明——證明所求方程即為符合條件的動點軌跡方程。
    3.高三年級上冊數(shù)學知識點總結(jié)
    1.不等式的定義
    在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
    2.比較兩個實數(shù)的大小
    兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,
    有a-b>0?;a-b=0?;a-b<0?.
    另外,若b>0,則有>1?;=1?;<1?.
    概括為:作差法,作商法,中間量法等.
    3.不等式的性質(zhì)
    (1)對稱性:a>b?;
    (2)傳遞性:a>b,b>c?;
    (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
    (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
    (5)可乘方:a>b>0?(n∈N,n≥2);
    (6)可開方:a>b>0?(n∈N,n≥2).
    4.高三年級上冊數(shù)學知識點總結(jié)
    1、圓柱體:
    表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:
    表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、正方體
    a-邊長,S=6a2,V=a3
    4、長方體
    a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱
    S-底面積h-高V=Sh
    6、棱錐
    S-底面積h-高V=Sh/3
    7、棱臺
    S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、擬柱體
    S1-上底面積,S2-下底面積,S0-中截面積
    h-高,V=h(S1+S2+4S0)/6
    9、圓柱
    r-底半徑,h-高,C—底面周長
    S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
    S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱
    R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、直圓錐
    r-底半徑h-高V=πr^2h/3
    12、圓臺
    r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
    13、球
    r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺
    h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    5.高三年級上冊數(shù)學知識點總結(jié)
    ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
    ②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.
    特殊棱錐的頂點在底面的射影位置:
    ①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
    ②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
    ③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
    ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.
    ⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
    ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
    ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
    ⑧每個四面體都有內(nèi)切球,球心