高三年級下冊數(shù)學(xué)必修二知識點(diǎn)

字號:

奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的。看到了一道有意思的題,就不惜一切代價(jià)攻克它。為了學(xué)習(xí),廢寢忘食一點(diǎn)也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三年級下冊數(shù)學(xué)必修二知識點(diǎn)》供大家參考,歡迎閱讀!
    1.高三年級下冊數(shù)學(xué)必修二知識點(diǎn)
    等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
    面積公式
    若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
    S=ab/2。
    且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
    S=ch/2=c2/4。
    等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
    2.高三年級下冊數(shù)學(xué)必修二知識點(diǎn)
    1.等差數(shù)列通項(xiàng)公式
    an=a1+(n-1)d
    n=1時(shí)a1=S1
    n≥2時(shí)an=Sn-Sn-1
    an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
    2.等差中項(xiàng)
    由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
    有關(guān)系:A=(a+b)÷2
    3.前n項(xiàng)和
    倒序相加法推導(dǎo)前n項(xiàng)和公式:
    Sn=a1+a2+a3+·····+an
    =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
    Sn=an+an-1+an-2+······+a1
    =an+(an-d)+(an-2d)+······+[an-(n-1)d]②
    由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
    ∴Sn=n(a1+an)÷2
    等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
    Sn=n(a1+an)÷2=na1+n(n-1)d÷2
    Sn=dn2÷2+n(a1-d÷2)
    亦可得
    a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
    an=2sn÷n-a1
    有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
    3.高三年級下冊數(shù)學(xué)必修二知識點(diǎn)
    1、異面直線的問題
    ①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
    ②異面直線性質(zhì):既不平行,又不相交。
    ③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
    ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
    求異面直線所成角步驟:
    A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
    B、證明作出的角即為所求角C、利用三角形來求角
    (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
    (8)空間直線與平面之間的位置關(guān)系直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)。
    三種位置關(guān)系的符號表示:aαa∩α=Aa‖α
    (9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β相交——有一條公共直線。α∩β=b
    2、空間中的平行問題
    (1)直線與平面平行的判定及其性質(zhì)
    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
    線線平行線面平行
    線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行線線平行
    (2)平面與平面平行的判定及其性質(zhì)
    兩個(gè)平面平行的判定定理
    (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
    (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個(gè)平面平行。
    (3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理
    (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
    (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
    3、空間中的垂直問題
    (1)線線、面面、線面垂直的定義
    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
    ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直。
    ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直。
    (2)垂直關(guān)系的判定和性質(zhì)定理
    ①線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
    性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
    ②面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
    4、空間角問題
    (1)直線與直線所成的角
    ①兩平行直線所成的角:規(guī)定為。
    ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
    ③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
    (2)直線和平面所成的角
    ①平面的平行線與平面所成的角:規(guī)定為。
    ②平面的垂線與平面所成的角:規(guī)定為。
    ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
    求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
    在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:
    (1)斜線上一點(diǎn)到面的垂線;
    (2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
    (3)二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
    ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
    ③直二面角:平面角是直角的二面角叫直二面角。
    兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
    4.高三年級下冊數(shù)學(xué)必修二知識點(diǎn)
    1.函數(shù)的奇偶性
    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);
    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
    (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
    (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
    2.復(fù)合函數(shù)的有關(guān)問題
    (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
    (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
    3.函數(shù)圖像(或方程曲線的對稱性)
    (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
    (2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
    4.函數(shù)的周期性
    (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
    5.高三年級下冊數(shù)學(xué)必修二知識點(diǎn)
    (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對于條件S的必然事件;
    (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對于條件S的不可能事件;
    (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
    (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
    (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
    (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。