高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)

字號(hào):

生命,需要我們?nèi)ヅΑD贻p時(shí),我們要努力鍛煉自己的能力,掌握知識(shí)、掌握技能、掌握必要的社會(huì)經(jīng)驗(yàn)。機(jī)會(huì),需要我們?nèi)ふ?。讓我們鼓起勇氣,運(yùn)用智慧,把握我們生命的每一分鐘,創(chuàng)造出一個(gè)更加精彩的人生。高一頻道為你整理了《高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)》,希望可以幫到你!
    1.高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    (1)隨機(jī)抽樣
    ①能從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題。
    ②結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性。
    ③在參與解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡單隨機(jī)抽樣方法從總體中抽取樣本;通過對(duì)實(shí)例的分析,了解分層抽樣和系統(tǒng)抽樣方法。
    ④能通過試驗(yàn)、查閱資料、設(shè)計(jì)調(diào)查問卷等方法收集數(shù)據(jù)。
    (2)用樣本估計(jì)總體
    ①通過實(shí)例體會(huì)分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學(xué)會(huì)列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會(huì)他們各自的特點(diǎn)。
    ②通過實(shí)例理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差。
    ③能根據(jù)實(shí)際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋。
    ④在解決統(tǒng)計(jì)問題的過程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征;初步體會(huì)樣本頻率分布和數(shù)字特征的隨機(jī)性。
    ⑤會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡單的實(shí)際問題;能通過對(duì)數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認(rèn)識(shí)統(tǒng)計(jì)的作用,體會(huì)統(tǒng)計(jì)思維與確定性思維的差異。
    ⑥形成對(duì)數(shù)據(jù)處理過程進(jìn)行初步評(píng)價(jià)的意識(shí)。
    (3)變量的相關(guān)性
    ①通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系。
    ②經(jīng)歷用不同估算方法描述兩個(gè)變量線性相關(guān)的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。
    2.高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    和差化積
    2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
    2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
    sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
    tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
    ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
    兩角和公式
    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    3.高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得
    如圖所示為a的不同大小影響函數(shù)圖形的情況。
    可以看到:
    (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。
    (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點(diǎn)。
    (8)顯然指數(shù)函數(shù)XX。
    奇偶性
    注圖:
    (1)為奇函數(shù)
    (2)為偶函數(shù)
    1.定義
    一般地,對(duì)于函數(shù)f(x)
    (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
    (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
    (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
    (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
    說明:
    ①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言
    ②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。
    (分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)
    ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義
    2.奇偶函數(shù)圖像的特征:
    定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對(duì)稱圖形。
    f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱點(diǎn)(x,y)→(-x,-y)
    奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增。
    偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。
    3.奇偶函數(shù)運(yùn)算
    (1).兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).
    (2).兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).
    (3).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).
    (4).兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).
    (5).兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).
    (6).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).
    4.高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    定義域
    (高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;
    值域
    名稱定義
    函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合
    常用的求值域的方法
    (1)化歸法;
    (2)圖象法(數(shù)形結(jié)合);
    (3)函數(shù)單調(diào)性法;
    (4)配方法;
    (5)換元法;
    (6)反函數(shù)法(逆求法);
    (7)判別式法;
    (8)復(fù)合函數(shù)法;
    (9)三角代換法;
    (10)基本不等式法等
    關(guān)于函數(shù)值域誤區(qū)
    定義域、對(duì)應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就削弱或談化了,對(duì)值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對(duì)函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對(duì)值域求法的研究和討論,有利于對(duì)定義域內(nèi)函的理解,從而深化對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。
    “范圍”與“值域”相同嗎?
    “范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說:“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。
    5.高一上冊數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點(diǎn)的直線的斜率公式:
    注意下面四點(diǎn):
    (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。