奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學(xué)習(xí),廢寢忘食一點也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三年級數(shù)學(xué)下冊知識點總結(jié)》供大家參考,歡迎閱讀!
1.高三年級數(shù)學(xué)下冊知識點總結(jié)
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
不等式的判定:
①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a”
③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
④在列不等式時,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負數(shù)、不大于、小于等等。
2.高三年級數(shù)學(xué)下冊知識點總結(jié)
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
3、直線方程
點斜式:
直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
3.高三年級數(shù)學(xué)下冊知識點總結(jié)
等差數(shù)列
1.定義:如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。同樣為數(shù)列的等比數(shù)列的性質(zhì)與等差數(shù)列也有相通之處。
2.數(shù)列為等差數(shù)列的充要條件是:數(shù)列的前n項和S可以寫成S=an^2+bn的形式(其中a、b為常數(shù)).
3.性質(zhì)1:公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
4.性質(zhì)2:公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
5.性質(zhì)3:當公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當d<0時,等差數(shù)列中的數(shù)隨項數(shù)的減少而減小;d=0時,等差數(shù)列中的數(shù)等于一個常數(shù).
4.高三年級數(shù)學(xué)下冊知識點總結(jié)
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質(zhì):
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題
③用數(shù)軸表示一元一次不等式(組)的解集
5.高三年級數(shù)學(xué)下冊知識點總結(jié)
1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應(yīng)平面上的一個點,二元一次不等式(組)的解集對應(yīng)平面直角坐標系中的一個半平面(平面區(qū)域)。
3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應(yīng)不等式。
5.一個二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應(yīng)的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。
7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應(yīng)把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應(yīng)把邊界畫成虛線。
8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
9.從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據(jù)題意,設(shè)出變量;
(2)分析問題中的變量,并根據(jù)各個不等關(guān)系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。