高一年級數(shù)學上學期知識點整理

字號:


    高一新生要作好充分思想準備,以自信、寬容的心態(tài),盡快融入集體,適應新同學、適應新校園環(huán)境、適應與初中迥異的紀律制度。記?。菏悄阒鲃拥剡m應環(huán)境,而不是環(huán)境適應你。因為你走向社會參加工作也得適應社會。以下內(nèi)容是為你整理的《高一年級數(shù)學上學期知識點整理》,希望你不負時光,努力向前,加油!
    1.高一年級數(shù)學上學期知識點整理
    復數(shù)定義
    我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復系數(shù)多項式在復數(shù)域中總有根。
    復數(shù)表達式
    虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:
    a=a+ia為實部,i為虛部
    復數(shù)運算法則
    加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
    減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結果還是0,也就在數(shù)字中沒有復數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
    復數(shù)與幾何
    ①幾何形式
    復數(shù)z=a+bi被復平面上的點z(a,b)確定。這種形式使復數(shù)的問題可以借助圖形來研究。也可反過來用復數(shù)的理論解決一些幾何問題。
    ②向量形式
    復數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數(shù)四則運算得到恰當?shù)膸缀谓忉尅?BR>    ③三角形式
    復數(shù)z=a+bi化為三角形式
    2.高一年級數(shù)學上學期知識點整理
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
    13、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    3.高一年級數(shù)學上學期知識點整理
    冪函數(shù)性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
    總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:
    如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
    如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
    在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
    在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
    而只有a為正數(shù),0才進入函數(shù)的值域。
    由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
    4.高一年級數(shù)學上學期知識點整理
    函數(shù)的解析式與定義域
    函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
    (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;
    (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
    ①分式的分母不得為零;
    ②偶次方根的被開方數(shù)不小于零;
    ③對數(shù)函數(shù)的真數(shù)必須大于零;
    ④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
    ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.
    應注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).
    (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.
    已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.2、求函數(shù)的解析式一般有四種情況
    (1)根據(jù)某實際問題需建立一種函數(shù)關系時,必須引入合適的變量,根據(jù)數(shù)學的有關知識尋求函數(shù)的解析式.
    (2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設條件,列出方程組,求出a,b即可.
    (3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.
    (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
    5.高一年級數(shù)學上學期知識點整理
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。
    性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。