高一年級必修三數(shù)學(xué)知識點(diǎn)整理

字號:


    進(jìn)入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進(jìn)入學(xué)習(xí)狀態(tài)。高一頻道為正在努力學(xué)習(xí)的你整理了《高一年級必修三數(shù)學(xué)知識點(diǎn)整理》,希望對你有幫助!
    1.高一年級必修三數(shù)學(xué)知識點(diǎn)整理
    1、直線方程形式
    一般式:Ax+By+C=0(AB≠0)
    斜截式:y=kx+b(k是斜率b是x軸截距)
    點(diǎn)斜式:y-y1=k(x-x1)(直線過定點(diǎn)(x1,y1)
    兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(diǎn)(x1,y1),(x2,y2)
    截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
    做題過程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
    在與圓及圓錐曲線結(jié)合的過程中,還要用到點(diǎn)到直線距離公式。
    2、直線方程的局限性
    各種不同形式的直線方程的局限性:
    (1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;
    (2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;
    (3)截距式不能表示與坐標(biāo)軸平行或過原點(diǎn)的直線;
    (4)直線方程的一般式中系數(shù)A、B不能同時為零。
    2.高一年級必修三數(shù)學(xué)知識點(diǎn)整理
    分層抽樣:
    當(dāng)已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。
    利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
    不放回抽樣和放回抽樣:
    在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.
    隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
    分層抽樣的特點(diǎn):
    (1)分層抽樣適用于差異明顯的幾部分組成的情況;
    (2)在每一層進(jìn)行抽樣時,在采用簡單隨機(jī)抽樣或系統(tǒng)抽樣;
    (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
    (4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。
    3.高一年級必修三數(shù)學(xué)知識點(diǎn)整理
    1、圓柱體:
    表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:
    表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高)
    3、正方體
    a-邊長,S=6a2,V=a3
    4、長方體
    a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱
    S-底面積h-高V=Sh
    6、棱錐
    S-底面積h-高V=Sh/3
    7、棱臺
    S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、擬柱體
    S1-上底面積,S2-下底面積,S0-中截面積
    h-高,V=h(S1+S2+4S0)/6
    9、圓柱
    r-底半徑,h-高,C—底面周長
    S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
    S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱
    R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、直圓錐
    r-底半徑h-高V=πr^2h/3
    12、圓臺
    r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
    13、球
    r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺
    h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺
    r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體
    R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑
    V=2π2Rr2=π2Dd2/4
    17、桶狀體
    D-桶腹直徑d-桶底直徑h-桶高
    V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
    V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    4.高一年級必修三數(shù)學(xué)知識點(diǎn)整理
    直線與方程
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的.角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點(diǎn)的直線的斜率公式:
    注意下面四點(diǎn):
    (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
    5.高一年級必修三數(shù)學(xué)知識點(diǎn)整理
    兩角和公式
    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    半角公式
    sin(A/2)=√(1-cosA)/2)sin(A/2)=-√(1-cosA)/2)
    cos(A/2)=√(1+cosA)/2)cos(A/2)=-√(1+cosA)/2)
    tan(A/2)=√(1-cosA)/(1+cosA)tan(A/2)=-√(1-cosA)/(1+cosA)
    ctg(A/2)=√(1+cosA)/(1-cosA)ctg(A/2)=-√(1+cosA)/(1-cosA)
    倍角公式
    tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
    和差化積
    2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
    2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
    sinA+sinB=2sin(A+B)/2)cos(A-B)/2cosA+cosB=2cos(A+B)/2)sin(A-B)/2)
    tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
    ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB