高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

字號(hào):

奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價(jià)攻克它。為了學(xué)習(xí),廢寢忘食一點(diǎn)也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)》供大家參考,歡迎閱讀!
    1.高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    一、集合有關(guān)概念
    1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
    2、集合的中元素的三個(gè)特性:
    1.元素的確定性;
    2.元素的互異性;
    3.元素的無序性
    說明:
    (1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
    (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
    (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
    (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
    3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
    1.用拉丁字母表示集合:A={我校的'籃球隊(duì)員},B={1,2,3,4,5}
    2.集合的表示方法:列舉法與描述法。
    注意?。撼S脭?shù)集及其記法:
    非負(fù)整數(shù)集(即自然數(shù)集)記作:N
    正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
    關(guān)于“屬于”的概念
    集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
    列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。
    描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
    ①語言描述法:例:{不是直角三角形的三角形}
    ②數(shù)學(xué)式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{xx-3>2}
    4、集合的分類:
    1.有限集含有有限個(gè)元素的集合
    2.無限集含有無限個(gè)元素的集合
    3.空集不含任何元素的集合例:{xx2=-5}
    二、集合間的基本關(guān)系
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
    實(shí)例:設(shè)A={xx2-1=0}B={-1,1}“元素相同”
    結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
    ①任何一個(gè)集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時(shí)BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    2.高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    解三角形
    (1)正弦定理和余弦定理
    掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題。
    (2)應(yīng)用
    能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題。
    數(shù)列
    (1)數(shù)列的概念和簡(jiǎn)單表示法。
    ①了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式)。
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
    (2)等差數(shù)列、等比數(shù)列。
    ①理解等差數(shù)列、等比數(shù)列的概念。
    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式。
    ③能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題。
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
    不等關(guān)系
    一元二次不等式
    ①會(huì)從實(shí)際情境中抽象出一元二次不等式模型。
    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系。
    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖。
    二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題
    ①會(huì)從實(shí)際情境中抽象出二元一次不等式組。
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。
    ③會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決。
    基本不等式:
    ①了解基本不等式的證明過程。
    ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)。
    3.高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    空間兩條直線只有三種位置關(guān)系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
    2、若從有無公共點(diǎn)的角度看可分為兩類:
    (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
    ②直線和平面相交——有且只有一個(gè)公共點(diǎn)
    直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
    4.高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
    (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
    (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
    (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
    (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
    (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。
    5.高三數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    等比數(shù)列
    1、等比中項(xiàng)
    如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。
    有關(guān)系:
    注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。
    2、等比數(shù)列通項(xiàng)公式
    an=a1xq’(n—1)(其中首項(xiàng)是a1,公比是q)
    an=Sn—S(n—1)(n≥2)
    前n項(xiàng)和
    當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
    Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)
    當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
    Sn=na1
    3、等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系
    an=a1=s1(n=1)
    an=sn—s(n—1)(n≥2)
    4、等比數(shù)列性質(zhì)
    (1)若m、n、p、q∈Nx,且m+n=p+q,則am·an=ap·aq;
    (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
    (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}
    (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。
    記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1
    另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
    (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1—q’n)/(1—q)
    (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n—m)
    (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。
    注意:上述公式中a’n表示a的n次方。