小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題公式及練習(xí)題

字號(hào):

奧數(shù)是奧林匹克數(shù)學(xué)競(jìng)賽的簡(jiǎn)稱。1934年—1935年,前蘇聯(lián)開始在列寧格勒和莫斯科舉辦中學(xué)數(shù)學(xué)競(jìng)賽,并冠以數(shù)學(xué)奧林匹克競(jìng)賽的名稱,1959年在布加勒斯特舉辦第xx屆國(guó)際數(shù)學(xué)奧林匹克競(jìng)賽。以下是整理的《小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題公式及練習(xí)題》相關(guān)資料,希望幫助到您。
    1.小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題公式
    (1)草的生長(zhǎng)速度=(對(duì)應(yīng)的牛頭數(shù)×吃的較多天數(shù)-相應(yīng)的牛頭數(shù)×吃的較少天數(shù))÷(吃的較多天數(shù)-吃的較少天數(shù))
    (2)原有草量=牛頭數(shù)×吃的天數(shù)-草的生長(zhǎng)速度×吃的天數(shù)
    (3)吃的天數(shù)=原有草量÷(牛頭數(shù)-草的生長(zhǎng)速度)
    (4)牛頭數(shù)=原有草量÷吃的天數(shù)+草的生長(zhǎng)速度 
    2.小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題練習(xí)題
    天氣漸漸變冷,牧場(chǎng)上的草不僅不增長(zhǎng)反而以固定的速度減少。已知牧場(chǎng)上有一片草地,草地上的草可供給20頭牛吃5天,15頭牛吃6天,照這樣計(jì)算可供給多少頭牛吃10天?
    分析:設(shè)一頭牛一天吃的草為1份。原有草量是固定的。在牛吃草的過(guò)程中,由于天氣變冷,草每天都均勻的減少。
    草每天減少的量是固定的。那么原有草量-5天草的減少的量=20頭牛吃5天的草量=20×5=100份。原有草量-6天草的減少量=15頭牛吃6天的草量=15×6=90份。那么(100-90)÷(6天草的減少量-5天草的減少的量)就是草每天的減少量。
    每天草的減少量:(100-90)÷(6-5)=10份。
    原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份)
    牧場(chǎng)10天實(shí)際消耗的原有草量:10×10=100(份)
    10天可供多少頭牛吃:(150-100)÷10=5(頭)
    3.小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題練習(xí)題
    有一個(gè)蓄水池裝有9根水管,其中一根為進(jìn)水管,其余8根為相同的出水管。進(jìn)水管以均勻的速度不停地向這個(gè)蓄水池注水。后來(lái)有人想打開出水管,使池內(nèi)的水全部排光(這時(shí)池內(nèi)已注入了一些水)。如果把8根出水管全部打開,需3小時(shí)把池內(nèi)的水全部排光;如果僅打開5根出水管,需6小時(shí)把池內(nèi)的水全部排光。問(wèn)要想在4.5小時(shí)內(nèi)把池內(nèi)的水全部排光,需同時(shí)打開幾個(gè)出水管?
    考點(diǎn):牛吃草問(wèn)題
    分析:假設(shè)打開一根出水管每小時(shí)可排水“1份”,那么8根出水管開3小時(shí)共排出水8×3=24(份);5根出水管開6小時(shí)共排出水5×6=30(份);兩種情況比較,可知3小時(shí)內(nèi)進(jìn)水管放進(jìn)的水是30-24=6(份);進(jìn)水管每小時(shí)放進(jìn)的水是6÷3=2(份);在4.5小時(shí)內(nèi),池內(nèi)原有的水加上進(jìn)水管放進(jìn)的水,共有8×3+(4.5-3)×2=27(份)。由此解答即可。
    解:設(shè)打開一根出水管每小時(shí)可排出水“1份”,8根出水管開3小時(shí)共排出水8×3=24(份);5根出水管開6小時(shí)共排出水5×6=30(份)。
    30-24=6(份),這6份是“6-3=3”小時(shí)內(nèi)進(jìn)水管放進(jìn)的水。
    (30-24)÷(6-3)=6÷3=2(份),這“2份”就是進(jìn)水管每小時(shí)進(jìn)的水。
    [8×3+(4.5-3)×2]÷4.5
    =[24+1.5×2]÷4.5
    =27÷4.5
    =6(根)
    答:需同時(shí)打開6根出水管。
    點(diǎn)評(píng):此題屬于牛吃草問(wèn)題,解答關(guān)鍵是把打開一根出水管每小時(shí)可排水“1份”,進(jìn)一步分析推理求解。
    4.小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題練習(xí)題
    經(jīng)測(cè)算,地球上的資源可供100億人生活100年,或可供80億人生活300年。假設(shè)地球新生成的資源增長(zhǎng)速度是一定的,為使人類有不斷發(fā)展的潛力,地球最多能養(yǎng)活多少億人?
    分析:根據(jù)“100億人生活100年,”知道一共有資源1萬(wàn)億人每年,再根據(jù)“80億人生活300年,”知道一共有資源2.4萬(wàn)億人每年,即相差的1.4萬(wàn)億人每年就是200年增長(zhǎng)的,所以100年增長(zhǎng)0.7萬(wàn)億人每年,1年增長(zhǎng)70億人每年,當(dāng)增長(zhǎng)量等于消耗量時(shí),可以永遠(yuǎn)生活,所以最多70億人。
    解答:解:100×100=10000(份),
    80×300=24000(份),
    24000-10000=14000(份),
    14000÷200=70(億人),
    答:地球最多能養(yǎng)活70億人。
    5.小學(xué)六年級(jí)奧數(shù)牛吃草問(wèn)題練習(xí)題
    1、牧場(chǎng)長(zhǎng)滿牧草,每天牧草勻速生長(zhǎng),這片牧場(chǎng)可供10頭牛吃20天,可供15頭牛吃10天。問(wèn)可供25頭牛吃幾天?
    2、畫展9點(diǎn)開門,但早就有人排隊(duì)入場(chǎng)。以第一個(gè)觀眾來(lái)到時(shí)起,每分鐘來(lái)的觀眾人數(shù)一樣多。如果開3個(gè)入場(chǎng)口,則9分鐘后就不再有人排隊(duì);如果開5個(gè)入場(chǎng)口,則5分鐘后就不再有人排隊(duì)。那么第一個(gè)觀眾到達(dá)的時(shí)間是幾點(diǎn)幾分?
    3、一片牧草,可供9頭牛吃12天,也可供8頭牛吃16天。現(xiàn)在開始只有4頭牛吃,從第7天起又增加了若干頭牛來(lái)吃草,再吃6天吃完了所有的草。問(wèn)從第7天起增加了多少頭牛(草每天勻速生長(zhǎng),每頭牛每天的吃草量相等)?
    4、一片牧草,可供16頭牛吃20天,也可供80只羊吃12天,如果每天1頭牛的吃草量等于每天4只羊的吃草量,那么10頭牛與60只羊一起吃這一片牧草,問(wèn)幾天可以吃完這片牧草(牧草每天生長(zhǎng)的速度相同,每只羊、每頭牛每天的吃草量相同)?
    5、哥哥沿著向上移動(dòng)的自動(dòng)扶梯從頂向下走到底,共走了100級(jí),相同的時(shí)間內(nèi),妹妹沿著自動(dòng)扶梯從底向上走到頂,共走了50級(jí)。若哥哥單位時(shí)間內(nèi)走的級(jí)數(shù)是妹妹的2倍。那么當(dāng)自動(dòng)扶梯靜止時(shí),自動(dòng)扶梯能看到的部分有多少級(jí)?