小學生奧數(shù)公約數(shù)與最小公倍數(shù)、奇偶性練習題

字號:

在解奧數(shù)題時,經(jīng)常要提醒自己,遇到的新問題能否轉(zhuǎn)化成舊問題解決,化新為舊,透過表面,抓住問題的實質(zhì),將問題轉(zhuǎn)化成自己熟悉的問題去解答。轉(zhuǎn)化的類型有條件轉(zhuǎn)化、問題轉(zhuǎn)化、關系轉(zhuǎn)化、圖形轉(zhuǎn)化等。 以下是整理的《小學生奧數(shù)公約數(shù)與最小公倍數(shù)練習題》相關資料,希望幫助到您。
    1.小學生奧數(shù)公約數(shù)與最小公倍數(shù)練習題
    爺爺對小明說:“我現(xiàn)在的年齡是你的7倍,過幾年是你的6倍,再過若干年就分別是你的5倍、4倍、3倍、2倍?!蹦阒罓敔敽托∶鳜F(xiàn)在的年齡嗎?
    爺爺和小明的年齡隨著時間的推移都在變化,但他們的年齡差是保持不變的。爺爺?shù)哪挲g現(xiàn)在是小明的7倍,說明他們的年齡差是6的倍數(shù);同理,他們的年齡差也是5,4,3,2,1的倍數(shù)。由此推知,他們的年齡差是6,5,4,3,2的公倍數(shù)。
    [6,5,4,3,2]=60,爺爺和小明的年齡差是60的整數(shù)倍。
    考慮到年齡的實際情況,爺爺與小明的年齡差應是60歲。
    所以現(xiàn)在小明的年齡=60÷(7-1)=10(歲),爺爺?shù)哪挲g=10×7=70(歲)。 
    2.小學生奧數(shù)公約數(shù)與最小公倍數(shù)練習題
    1、有一個自然數(shù),被6除余1,被5除余1,被4除余1,這個自然數(shù)最小是幾?
    2、把長120厘米,寬80厘米的鐵板裁成面積相等,的正方形而且沒有剩余,可以裁成多少塊?
    3、把長132厘米,寬60厘米,厚36厘米的木料鋸成盡可能大的,同樣大小的正方體木塊,鋸后不能有剩余,能鋸成多少塊?
    4、一盒鋼筆可以平均分給2、3、4、5、6個同學,這盒鋼筆最小有多少枝?
    5、用96朵紅花和72朵白花做成花束,如果各花束里紅花的朵數(shù)相同,白花的朵數(shù)也相同,每束花里最少有幾朵花?
    3.小學生奧數(shù)奇偶性練習題
    一、任意寫出兩個偶數(shù),求出它們的和。
    ()+()=()舉例驗證
    ()+()=()()+()=()
    偶數(shù)+偶數(shù)=()()+()=()
    二、任意寫出兩個奇數(shù),求出它們的和。
    ()+()=()舉例驗證
    ()+()=()()+()=()
    奇數(shù)+奇數(shù)=()()+()=()
    三、任意寫出一個偶數(shù)和一個奇數(shù),求出它們的和。
    ()+()=()舉例驗證
    ()+()=()()+()=()
    偶數(shù)+奇數(shù)=()()+()=()
    四、你能利用上面的探索方法,找出數(shù)的其他奇偶性變化的規(guī)律嗎?請試著完成下面的填空。
    偶數(shù)—偶數(shù)=()
    奇數(shù)—奇數(shù)=()
    奇數(shù)—偶數(shù)=()
    奇數(shù)×奇數(shù)=()
    奇數(shù)×偶數(shù)=()
    偶數(shù)×偶數(shù)=()
    4.小學生奧數(shù)奇偶性練習題
    1、有5張撲 克牌,畫面向上。小明每次翻轉(zhuǎn)其中的4張,那么,他能在翻動若干次后,使5張牌的畫面都向下嗎?
    2、甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一個棋子,這個棋子是什么顏色的?
    3、有6張撲 克牌,畫面都向上,小明每次翻轉(zhuǎn)其中的5張。那么,要使6張牌的畫面都向下,他至少需要翻動多少次?
    4、博物館有并列的5間展室的電燈開關。他從第一間展室開始,走到第二間,再走到第三間……,走到第五間后往回走,走到第四間,再走到第三間……,如果開始時五間展室都亮著燈,那么他走過100個房間后,還有幾間亮著燈?
    5、有九只杯口向上的杯子放在桌子上,每次將其中四只杯子同時“翻轉(zhuǎn)”,使其杯口向下,問能不能經(jīng)過這樣有限多次的“翻轉(zhuǎn)”后,使九只杯口全部向下?為什么?
    5.小學生奧數(shù)奇偶性練習題
    1、小華買了一本共有96張練習紙的練習本,并依次將它的各面編號(即由第1面一直編到第192面)。小麗從該練習本中撕下其中25張紙,并將寫在它們上面的50個編號相加。試問,小麗所加得的和數(shù)能否為2000?
    【分析】不可能。因為25個奇數(shù)相加的和是奇數(shù),25個偶數(shù)相加是偶數(shù),奇數(shù)加偶數(shù)=奇數(shù)
    2、有98個孩子,每人胸前有一個號碼,號碼從1到98各不相同。試問:能否將這些孩子排成若干排,使每排中都有一個孩子的號碼數(shù)等于同排中其余孩子號碼數(shù)的和?并說明理由。
    【分析】不可以。一名為98個數(shù)中有49個奇數(shù),奇數(shù)加偶數(shù)等于奇數(shù),奇數(shù)不是二的倍數(shù)。
    3、有20個1升的容器,分別盛有1,2,3,…,20立方厘米水。允許由容器A向容器B倒進與B容器內(nèi)相同的水(在A中的水不少于B中水的條件下)。問:在若干次倒水以后能否使其中11個容器中各有11立方厘米的水?
    【分析】不可能,因為兩個奇數(shù)相加等于偶數(shù),兩個偶數(shù)相加等于偶數(shù),11是奇數(shù),B是偶數(shù),偶數(shù)不等于奇數(shù)。
    4、一個俱樂部里的成員只有兩種人:一種是老實人,永遠說真話;一種是騙子,永遠說假話。某天俱樂部的全體成員圍坐成一圈,每個老實人兩旁都是騙子,每個騙子兩旁都是老實人。外來一位記者問俱樂部的成員張三:“俱樂部里共有多少成員?”張三答:“共有45人。”另一個成員李四說:“張三是老實人?!闭埮袛嗬钏氖抢蠈嵢诉€是騙子?
    【分析】李四是騙子,老實人和說謊的人的人數(shù)相等,可是45是個奇數(shù),所以張三是騙子。
    5、圍棋盤上有19×19個交叉點,現(xiàn)在放滿了黑子與白子,且黑子與白子相間地放,并使黑子(或白子)的上、下、左、右的交叉點上放著白子(或黑子)。問:能否把黑子全移到原來的白子的位置上,而白子也全移到原來黑子的位置上?
    【分析】不可以,因為不是白字多黑字一個,就是黑子多白字一個,不可能相等。