高一年級數學必修四知識點整理

字號:

高一新生要作好充分思想準備,以自信、寬容的心態(tài),盡快融入集體,適應新同學、適應新校園環(huán)境、適應與初中迥異的紀律制度。記?。菏悄阒鲃拥剡m應環(huán)境,而不是環(huán)境適應你。因為你走向社會參加工作也得適應社會。以下內容是為你整理的《高一年級數學必修四知識點整理》,希望你不負時光,努力向前,加油!
    1.高一年級數學必修四知識點整理
    指數函數
    (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數函數的值域為大于0的實數集合。
    (3)函數圖形都是下凹的。
    (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數總是在某一個方向上無限趨向于X軸,永不相交。
    (7)函數總是通過(0,1)這點。
    (8)顯然指數函數無XX。
    2.高一年級數學必修四知識點整理
    【公式一:】
    設α為任意角,終邊相同的角的同一三角函數的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二:】
    設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三:】
    任意角α與-α的三角函數值之間的關系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四:】
    利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五:】
    利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六:】
    π/2±α及3π/2±α與α的三角函數值之間的關系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    3.高一年級數學必修四知識點整理
    冪函數的性質:
    對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
    排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
    排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數;
    排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
    總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;
    如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
    在x大于0時,函數的值域總是大于0的實數。
    在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
    而只有a為正數,0才進入函數的值域。
    由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。
    可以看到:
    (1)所有的圖形都通過(1,1)這點。
    (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
    (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
    (4)當a小于0時,a越小,圖形傾斜程度越大。
    (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
    (6)顯然冪函數。
    4.高一年級數學必修四知識點整理
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
    直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點
    直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
    直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
    直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
    5.高一年級數學必修四知識點整理
    直線與方程
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的.角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點的直線的斜率公式:
    注意下面四點:
    (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關;
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。