高三數(shù)學(xué)上冊必修三知識點歸納

字號:


    奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學(xué)習(xí),廢寢忘食一點也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三數(shù)學(xué)上冊必修三知識點歸納》供大家參考,歡迎閱讀!
    1.高三數(shù)學(xué)上冊必修三知識點歸納
    一、求動點的軌跡方程的基本步驟
    1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
    2.寫出點M的集合;
    3.列出方程=0;
    4.化簡方程為最簡形式;
    5.檢驗。
    二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
    1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3.相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
    4.參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    2.高三數(shù)學(xué)上冊必修三知識點歸納
    乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
    三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b
    |a-b|≥|a|-|b|-|a|≤a≤|a|
    一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
    根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理
    判別式
    b2-4ac=0注:方程有兩個相等的實根
    b2-4ac>0注:方程有兩個不等的實根
    b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根
    三角函數(shù)公式
    兩角和公式
    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    倍角公式
    tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
    半角公式
    sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
    cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
    tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
    ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
    和差化積
    2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
    2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
    sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
    tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
    ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
    3.高三數(shù)學(xué)上冊必修三知識點歸納
    1.進(jìn)行集合的交、并、補(bǔ)運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.
    2.在應(yīng)用條件時,易A忽略是空集的情況
    3.你會用補(bǔ)集的思想解決有關(guān)問題嗎?
    4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
    5.你知道“否命題”與“命題的否定形式”的區(qū)別.
    6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
    7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.
    8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域.
    9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)
    10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
    11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
    12.求函數(shù)的值域必須先求函數(shù)的定義域。
    13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
    14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
    (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
    15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
    16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
    17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
    18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
    19.絕對值不等式的解法及其幾何意義是什么?
    20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
    21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
    22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
    23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
    24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?
    25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。
    26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?
    27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
    28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。
    29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
    30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
    31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
    32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
    33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
    34.你還記得某些特殊角的三角函數(shù)值嗎?
    35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
    36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
    (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.
    (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.
    (3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.
    37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
    38.形如的周期都是,但的周期為。
    39.正弦定理時易忘比值還等于2R。
    3.高三數(shù)學(xué)上冊必修三知識點歸納
    (1)先看“充分條件和必要條件”
    當(dāng)命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
    但為什么說q是p的必要條件呢?
    事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
    (2)再看“充要條件”
    若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p
    (3)定義與充要條件
    數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。“充要條件”有時還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。
    (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
    4.高三數(shù)學(xué)上冊必修三知識點歸納
    ①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。
    ②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形。
    特殊棱錐的頂點在底面的射影位置:
    ①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心。
    ②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。
    ③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心。
    ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心。
    ⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心。
    ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。
    ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
    ⑧每個四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑。
    [注]:
    i、各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側(cè)面的等腰三角形不知是否全等)
    ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。
    簡證:AB⊥CD,AC⊥BD
    BC⊥AD。令得,已知則。
    iii、空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形。
    iv、若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形。
    簡證:取AC中點,則平面90°易知EFGH為平行四邊形EFGH為長方形。若對角線等,則為正方形。
    5.高三數(shù)學(xué)上冊必修三知識點歸納
    一、函數(shù)的單調(diào)性
    在(a,b)內(nèi)可導(dǎo)函數(shù)f(x),f′(x)在(a,b)任意子區(qū)間內(nèi)都不恒等于0.
    f′(x)≥0⇔f(x)在(a,b)上為增函數(shù).
    f′(x)≤0⇔f(x)在(a,b)上為減函數(shù).
    二、函數(shù)的極值
    1、函數(shù)的極小值:
    函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其它點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側(cè)f′(x)
    2、函數(shù)的極大值:
    函數(shù)y=f(x)在點x=b的函數(shù)值f(b)比它在點x=b附近的其他點的函數(shù)值都大,f′(b)=0,而且在點x=b附近的左側(cè)f′(x)>0,右側(cè)f′(x)<0,則點b叫做函數(shù)y=f(x)的極大值點,f(b)叫做函數(shù)y=f(x)的極大值.
    極小值點,極大值點統(tǒng)稱為極值點,極大值和極小值統(tǒng)稱為極值.
    三、函數(shù)的最值
    1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有值與最小值.
    2、若函數(shù)f(x)在[a,b]上單調(diào)遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的值;若函數(shù)f(x)在[a,b]上單調(diào)遞減,則f(a)為函數(shù)的值,f(b)為函數(shù)的最小值.
    四、求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法
    1、確定函數(shù)f(x)的定義域;
    2、求f′(x),令f′(x)=0,求出它在定義域內(nèi)的一切實數(shù)根;
    3、把函數(shù)f(x)的間斷點(即f(x)的無定義點)的橫坐標(biāo)和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)f(x)的定義區(qū)間分成若干個小區(qū)間;
    4、確定f′(x)在各個開區(qū)間內(nèi)的符號,根據(jù)f′(x)的符號判定函數(shù)f(x)在每個相應(yīng)小開區(qū)間內(nèi)的增減性.