進入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態(tài)。高一頻道為正在努力學習的你整理了《高一上冊化學必修一知識點梳理》,希望對你有幫助!
1.高一上冊化學必修一知識點梳理
一、元素周期表
原子序數=核電荷數=質子數=核外電子數
1、元素周期表的編排原則:
①按照原子序數遞增的順序從左到右排列;
②將電子層數相同的元素排成一個橫行——周期;
③把最外層電子數相同的元素按電子層數遞增的順序從上到下排成縱行——族
2、周期序數=電子層數;主族序數=最外層電子數
3、元素金屬性和非金屬性判斷依據:
①元素金屬性強弱的判斷依據:
單質跟水或酸起反應置換出氫的難易;
元素價氧化物的水化物——氫氧化物的堿性強弱;置換反應。
②元素非金屬性強弱的判斷依據:
單質與氫氣生成氣態(tài)氫化物的難易及氣態(tài)氫化物的穩(wěn)定性;
價氧化物對應的水化物的酸性強弱;置換反應。
4、核素:具有一定數目的質子和一定數目的中子的一種原子。
①質量數==質子數+中子數:A==Z+N
②同位素:質子數相同而中子數不同的同一元素的不同原子,互稱同位素。(同一元素的各種同位素物理性質不同,化學性質相同)
二、元素周期律
1、影響原子半徑大小的因素:
①電子層數:電子層數越多,原子半徑越大(最主要因素)
②核電荷數:核電荷數增多,吸引力增大,使原子半徑有減小的趨向(次要因素)
③核外電子數:電子數增多,增加了相互排斥,使原子半徑有增大的傾向
2、元素的化合價與最外層電子數的關系:正價等于最外層電子數(氟氧元素無正價)
負化合價數=8—最外層電子數(金屬元素無負化合價)
3、同主族、同周期元素的結構、性質遞變規(guī)律:
同主族:從上到下,隨電子層數的遞增,原子半徑增大,核對外層電子吸引能力減弱,失電子能力增強,還原性(金屬性)逐漸增強,其離子的氧化性減弱。
同周期:左→右,核電荷數——→逐漸增多,最外層電子數——→逐漸增多
原子半徑——→逐漸減小,得電子能力——→逐漸增強,失電子能力——→逐漸減弱
氧化性——→逐漸增強,還原性——→逐漸減弱,氣態(tài)氫化物穩(wěn)定性——→逐漸增強
價氧化物對應水化物酸性——→逐漸增強,堿性——→逐漸減弱
三、化學鍵
含有離子鍵的化合物就是離子化合物;只含有共價鍵的化合物才是共價化合物。
NaOH中含極性共價鍵與離子鍵,NH4Cl中含極性共價鍵與離子鍵,Na2O2中含非極性共價鍵與離子鍵,H2O2中含極性和非極性共價鍵
四、化學能與熱能
1、在任何的化學反應中總伴有能量的變化。
原因:當物質發(fā)生化學反應時,斷開反應物中的化學鍵要吸收能量,而形成生成物中的化學鍵要放出能量?;瘜W鍵的斷裂和形成是化學反應中能量變化的主要原因。一個確定的化學反應在發(fā)生過程中是
吸收能量還是放出能量,決定于反應物的總能量與生成物的總能量的相對大小。E反應物總能量>E生成物總能量,為放熱反應。E反應物總能量
2、常見的放熱反應和吸熱反應
常見的放熱反應:
①所有的燃燒與緩慢氧化。
②酸堿中和反應。
③金屬與酸、水反應制氫氣。
④大多數化合反應(特殊:C+CO22CO是吸熱反應)。
常見的吸熱反應:
①以C、H2、CO為還原劑的氧化還原反應如:C(s)+H2O(g)=CO(g)+H2(g)。
②銨鹽和堿的反應如Ba(OH)2?8H2O+NH4Cl=BaCl2+2NH3↑+10H2O
③大多數分解反應如KClO3、KMnO4、CaCO3的分解等。
2.高一上冊化學必修一知識點梳理
降溫結晶和蒸發(fā)結晶的區(qū)別
一、原理不同
1、降溫結晶的原理是溫度降低,物質的溶解度減小,溶液達到飽和時不能被溶解的溶質析出。
2、蒸發(fā)結晶的原理是恒溫情況下或蒸發(fā)前后的溫度不變,溶解度不變,水分減少,溶液達到飽和時多余的溶質析出。
二、適用范圍不同
1、降溫結晶適用于溶解度隨溫度變化大而且是隨溫度降低而降低的溶質,比如NaNO₃、KNO₃等。高溫時溶解度高,冷卻熱溶液時,其溶解度下降,溶質結晶析出。
2、蒸發(fā)結晶適用于溶解度隨溫度變化不大的溶質,比如NaCL、KCL等。因為溶解度變化小,所以不論冷熱都溶解度變化不大,只有通過(加熱蒸發(fā))減少溶劑(水)才能使其析出結晶。
三、步驟不同
1、蒸發(fā)結晶直接在蒸發(fā)皿中加熱蒸發(fā)溶液至出現大量晶體(或有晶膜出現)即停止,用蒸發(fā)皿的余熱將剩余的溶劑蒸干。
2、降溫結晶先要加熱濃縮得到熱飽和溶液,然后趁熱過濾除去不溶性雜質,再冷卻結晶,過濾,得到的晶體中還可能含有其他雜質,若要進一步提純,再進行重結晶。
結晶的條件
需要結晶的溶液,往往呈過飽和狀態(tài)。通常是在加熱的情況下,使化合物溶解,過濾除去不溶解雜質,然后濃縮、放冷,析晶。最合適的溫度為5~10℃左右。如果在室溫條件下可以析晶,就不一定要放入冰箱中。放置對形成結晶來說是一個重要條件,它可使溶劑自然揮發(fā)到適當的濃度,即可析出結晶。特別是在探索過程中,對未知成分的結晶濃度是很難預測的,有時溶液太濃,粘度大就不易結晶;如果濃度適中,逐漸降溫,可能析出純度較高的結晶醫(yī)學教育|網搜集整理。X-射線衍射用的單晶即采用此法。在結晶過程中溶液濃度高則析出結晶的速度快,顆粒較小,夾雜的雜質可能多些。有時自溶液中析出結晶的速度太快,超過化合物晶核的形成和分子定向排列的速度,往往只能得到無定形粉末。
3.高一上冊化學必修一知識點梳理
影響蒸發(fā)的主要因素
1、與溫度高低有關。溫度越高,蒸發(fā)越快。無論在什么溫度,液體中總有一些速度很大的分子能夠飛出液面而成為汽分子,因此液體在任何溫度下都能蒸發(fā)。如果液體的溫度升高,分子的平均動能增大,從液面飛出去的分子數量就會增多,所以液體的溫度越高,蒸發(fā)得就越快;
2、是與液面面積大小有關。如果液體表面面積增大,處于液體表面附近的分子數目增加。因而在相同的時間里,從液面飛出的分子數就增多,所以液面面積增大,蒸發(fā)就加快;
3、是與空氣流動有關。當飛入空氣里的汽分子和空氣分子或其他汽分子發(fā)生碰撞。
蒸發(fā)的原理
蒸發(fā)量是指在一定時段內水分經蒸發(fā)而散布到空中的量,通常用蒸發(fā)掉的水層厚度的毫米數表示,水面或土壤的水分蒸發(fā)量,分別用不同的蒸發(fā)器測定。一般溫度越高、濕度越小、風速越大、氣壓越低、則蒸發(fā)量就越大;反之蒸發(fā)量就越小。
從微觀上看,蒸發(fā)就是液體分子從液面離去的過程。由于液體中的分子都在不停地作無規(guī)則運動,它們的平均動能的大小是跟液體本身的溫度相適應的。由于分子的無規(guī)則運動和相互碰撞,在任何時刻總有一些分子具有比平均動能還大的動能。
4.高一上冊化學必修一知識點梳理
丁達爾效應的產生原因
在光的傳播過程中,光線照射到粒子時,如果粒子大于入射光波長很多倍,則發(fā)生光的反射;如果粒子小于入射光波長,則發(fā)生光的散射,這時觀察到的是光波環(huán)繞微粒而向其四周放射的光,稱為散射光或乳光。丁達爾效應就是光的散射現象或稱乳光現象。由于真溶液粒子直徑一般不超過1nm,膠體粒子介于溶液中溶質粒子和濁液粒子之間,其直徑在1~100nm。
小于可見光波長(400nm~700nm),因此,當可見光透過膠體時會產生明顯的散射作用。而對于真溶液,雖然分子或離子更小,但因散射光的強度隨散射粒子體積的減小而明顯減弱,因此,真溶液對光的散射作用很微弱。此外,散射光的強度還隨分散體系中粒子濃度增大而增強。
所以說,膠體能有丁達爾現象,而溶液幾乎沒有,可以采用丁達爾現象來區(qū)分膠體和溶液,注意:當有光線通過懸濁液時有時也會出現光路,但是由于懸濁液中的顆粒對光線的阻礙過大,使得產生的光路很短。
丁達爾效應的應用
現在這種現象經常經常被用來區(qū)分是膠體還是溶液。光束通過,出現的通道很短的時候其實這并不是膠體或者溶液,而是懸濁液。如果沒有出現通道那么就是溶液,有長長的光線通道出現那么就是膠體。
目前生活中的丁達爾效應大多數是用來區(qū)分膠體和溶液的,而在生活中很多的自然現象也可以看到,像是陽光透過樹葉留下一道光,其實這也可以用丁達爾現象來解釋。
5.高一上冊化學必修一知識點梳理
一、物質的分類
1、常見的物質分類法是樹狀分類法和交叉分類法。
2、混合物按分散系大小分為溶液、膠體和濁液三種,中間大小分散質直徑大小為1nm—100nm之間,這種分散系處于介穩(wěn)狀態(tài),膠粒帶電荷是該分散系較穩(wěn)定的主要原因。
3、濁液用靜置觀察法先鑒別出來,溶液和膠體用丁達爾現象鑒別。
當光束通過膠體時,垂直方向可以看到一條光亮的通路,這是由于膠體粒子對光線散射形成的。
4、膠體粒子能通過濾紙,不能通過半透膜,所以用半透膜可以分離提純出膠體,這種方法叫做滲析。
5、在25ml沸水中滴加5—6滴FeCl3飽和溶液,煮沸至紅褐色,即制得Fe(OH)3膠體溶液。該膠體粒子帶正電荷,在電場力作用下向陰極移動,從而該極顏色變深,另一極顏色變淺,這種現象叫做電泳。
二、離子反應
1、常見的電解質指酸、堿、鹽、水和金屬氧化物,它們在溶于水或熔融時都能電離出自由移動的離子,從而可以導電。
2、非電解質指電解質以外的化合物(如非金屬氧化物,氮化物、有機物等);單質和溶液既不是電解質也不是非電解質。
3、在水溶液或熔融狀態(tài)下有電解質參與的反應叫離子反應。
4、強酸(HCl、H2SO4、HNO3)、強堿(NaOH、KOH、Ba(OH)2)和大多數鹽(NaCl、BaSO4、Na2CO3、NaHSO4)溶于水都完全電離,所以電離方程式中間用“==”。
5、用實際參加反應的離子符號來表示反應的式子叫離子方程式。
在正確書寫化學方程式基礎上可以把強酸、強堿、可溶性鹽寫成離子方程式,其他不能寫成離子形式。
6、復分解反應進行的條件是至少有沉淀、氣體和水之一生成。
7、離子方程式正誤判斷主要含
①符合事實
②滿足守恒(質量守恒、電荷守恒、得失電子守恒)
③拆分正確(強酸、強堿、可溶鹽可拆)
④配比正確(量的多少比例不同)。
8、常見不能大量共存的離子:
①發(fā)生復分解反應(沉淀、氣體、水或難電離的酸或堿生成)
②發(fā)生氧化還原反應(MnO4-、ClO-、H++NO3-、Fe3+與S2-、HS-、SO32-、Fe2+、I-)
③絡合反應(Fe3+、Fe2+與SCN-)
④注意隱含條件的限制(顏色、酸堿性等)。
三、氧化還原反應
1、氧化還原反應的本質是有電子的轉移,氧化還原反應的特征是有化合價的升降。
2、失去電子(偏離電子)→化合價升高→被氧化→是還原劑;升價后生成氧化產物。還原劑具有還原性。
得到電子(偏向電子)→化合價降低→被還原→是氧化劑;降價后生成還原產物,氧化劑具有氧化性。
3、常見氧化劑有:Cl2、O2、濃H2SO4、HNO3、KMnO4(H+)、H2O2、ClO-、FeCl3等,
常見還原劑有:Al、Zn、Fe;C、H2、CO、SO2、H2S;SO32-、S2-、I-、Fe2+等
4、氧化還原強弱判斷法
①知反應方向就知道“一組強弱”
②金屬或非金屬單質越活潑對應的離子越不活潑(即金屬離子氧化性越弱、非金屬離子還原性越弱)
③濃度、溫度、氧化或還原程度等也可以判斷(越容易氧化或還原則對應能力越強)。
1.高一上冊化學必修一知識點梳理
一、元素周期表
原子序數=核電荷數=質子數=核外電子數
1、元素周期表的編排原則:
①按照原子序數遞增的順序從左到右排列;
②將電子層數相同的元素排成一個橫行——周期;
③把最外層電子數相同的元素按電子層數遞增的順序從上到下排成縱行——族
2、周期序數=電子層數;主族序數=最外層電子數
3、元素金屬性和非金屬性判斷依據:
①元素金屬性強弱的判斷依據:
單質跟水或酸起反應置換出氫的難易;
元素價氧化物的水化物——氫氧化物的堿性強弱;置換反應。
②元素非金屬性強弱的判斷依據:
單質與氫氣生成氣態(tài)氫化物的難易及氣態(tài)氫化物的穩(wěn)定性;
價氧化物對應的水化物的酸性強弱;置換反應。
4、核素:具有一定數目的質子和一定數目的中子的一種原子。
①質量數==質子數+中子數:A==Z+N
②同位素:質子數相同而中子數不同的同一元素的不同原子,互稱同位素。(同一元素的各種同位素物理性質不同,化學性質相同)
二、元素周期律
1、影響原子半徑大小的因素:
①電子層數:電子層數越多,原子半徑越大(最主要因素)
②核電荷數:核電荷數增多,吸引力增大,使原子半徑有減小的趨向(次要因素)
③核外電子數:電子數增多,增加了相互排斥,使原子半徑有增大的傾向
2、元素的化合價與最外層電子數的關系:正價等于最外層電子數(氟氧元素無正價)
負化合價數=8—最外層電子數(金屬元素無負化合價)
3、同主族、同周期元素的結構、性質遞變規(guī)律:
同主族:從上到下,隨電子層數的遞增,原子半徑增大,核對外層電子吸引能力減弱,失電子能力增強,還原性(金屬性)逐漸增強,其離子的氧化性減弱。
同周期:左→右,核電荷數——→逐漸增多,最外層電子數——→逐漸增多
原子半徑——→逐漸減小,得電子能力——→逐漸增強,失電子能力——→逐漸減弱
氧化性——→逐漸增強,還原性——→逐漸減弱,氣態(tài)氫化物穩(wěn)定性——→逐漸增強
價氧化物對應水化物酸性——→逐漸增強,堿性——→逐漸減弱
三、化學鍵
含有離子鍵的化合物就是離子化合物;只含有共價鍵的化合物才是共價化合物。
NaOH中含極性共價鍵與離子鍵,NH4Cl中含極性共價鍵與離子鍵,Na2O2中含非極性共價鍵與離子鍵,H2O2中含極性和非極性共價鍵
四、化學能與熱能
1、在任何的化學反應中總伴有能量的變化。
原因:當物質發(fā)生化學反應時,斷開反應物中的化學鍵要吸收能量,而形成生成物中的化學鍵要放出能量?;瘜W鍵的斷裂和形成是化學反應中能量變化的主要原因。一個確定的化學反應在發(fā)生過程中是
吸收能量還是放出能量,決定于反應物的總能量與生成物的總能量的相對大小。E反應物總能量>E生成物總能量,為放熱反應。E反應物總能量
2、常見的放熱反應和吸熱反應
常見的放熱反應:
①所有的燃燒與緩慢氧化。
②酸堿中和反應。
③金屬與酸、水反應制氫氣。
④大多數化合反應(特殊:C+CO22CO是吸熱反應)。
常見的吸熱反應:
①以C、H2、CO為還原劑的氧化還原反應如:C(s)+H2O(g)=CO(g)+H2(g)。
②銨鹽和堿的反應如Ba(OH)2?8H2O+NH4Cl=BaCl2+2NH3↑+10H2O
③大多數分解反應如KClO3、KMnO4、CaCO3的分解等。
2.高一上冊化學必修一知識點梳理
降溫結晶和蒸發(fā)結晶的區(qū)別
一、原理不同
1、降溫結晶的原理是溫度降低,物質的溶解度減小,溶液達到飽和時不能被溶解的溶質析出。
2、蒸發(fā)結晶的原理是恒溫情況下或蒸發(fā)前后的溫度不變,溶解度不變,水分減少,溶液達到飽和時多余的溶質析出。
二、適用范圍不同
1、降溫結晶適用于溶解度隨溫度變化大而且是隨溫度降低而降低的溶質,比如NaNO₃、KNO₃等。高溫時溶解度高,冷卻熱溶液時,其溶解度下降,溶質結晶析出。
2、蒸發(fā)結晶適用于溶解度隨溫度變化不大的溶質,比如NaCL、KCL等。因為溶解度變化小,所以不論冷熱都溶解度變化不大,只有通過(加熱蒸發(fā))減少溶劑(水)才能使其析出結晶。
三、步驟不同
1、蒸發(fā)結晶直接在蒸發(fā)皿中加熱蒸發(fā)溶液至出現大量晶體(或有晶膜出現)即停止,用蒸發(fā)皿的余熱將剩余的溶劑蒸干。
2、降溫結晶先要加熱濃縮得到熱飽和溶液,然后趁熱過濾除去不溶性雜質,再冷卻結晶,過濾,得到的晶體中還可能含有其他雜質,若要進一步提純,再進行重結晶。
結晶的條件
需要結晶的溶液,往往呈過飽和狀態(tài)。通常是在加熱的情況下,使化合物溶解,過濾除去不溶解雜質,然后濃縮、放冷,析晶。最合適的溫度為5~10℃左右。如果在室溫條件下可以析晶,就不一定要放入冰箱中。放置對形成結晶來說是一個重要條件,它可使溶劑自然揮發(fā)到適當的濃度,即可析出結晶。特別是在探索過程中,對未知成分的結晶濃度是很難預測的,有時溶液太濃,粘度大就不易結晶;如果濃度適中,逐漸降溫,可能析出純度較高的結晶醫(yī)學教育|網搜集整理。X-射線衍射用的單晶即采用此法。在結晶過程中溶液濃度高則析出結晶的速度快,顆粒較小,夾雜的雜質可能多些。有時自溶液中析出結晶的速度太快,超過化合物晶核的形成和分子定向排列的速度,往往只能得到無定形粉末。
3.高一上冊化學必修一知識點梳理
影響蒸發(fā)的主要因素
1、與溫度高低有關。溫度越高,蒸發(fā)越快。無論在什么溫度,液體中總有一些速度很大的分子能夠飛出液面而成為汽分子,因此液體在任何溫度下都能蒸發(fā)。如果液體的溫度升高,分子的平均動能增大,從液面飛出去的分子數量就會增多,所以液體的溫度越高,蒸發(fā)得就越快;
2、是與液面面積大小有關。如果液體表面面積增大,處于液體表面附近的分子數目增加。因而在相同的時間里,從液面飛出的分子數就增多,所以液面面積增大,蒸發(fā)就加快;
3、是與空氣流動有關。當飛入空氣里的汽分子和空氣分子或其他汽分子發(fā)生碰撞。
蒸發(fā)的原理
蒸發(fā)量是指在一定時段內水分經蒸發(fā)而散布到空中的量,通常用蒸發(fā)掉的水層厚度的毫米數表示,水面或土壤的水分蒸發(fā)量,分別用不同的蒸發(fā)器測定。一般溫度越高、濕度越小、風速越大、氣壓越低、則蒸發(fā)量就越大;反之蒸發(fā)量就越小。
從微觀上看,蒸發(fā)就是液體分子從液面離去的過程。由于液體中的分子都在不停地作無規(guī)則運動,它們的平均動能的大小是跟液體本身的溫度相適應的。由于分子的無規(guī)則運動和相互碰撞,在任何時刻總有一些分子具有比平均動能還大的動能。
4.高一上冊化學必修一知識點梳理
丁達爾效應的產生原因
在光的傳播過程中,光線照射到粒子時,如果粒子大于入射光波長很多倍,則發(fā)生光的反射;如果粒子小于入射光波長,則發(fā)生光的散射,這時觀察到的是光波環(huán)繞微粒而向其四周放射的光,稱為散射光或乳光。丁達爾效應就是光的散射現象或稱乳光現象。由于真溶液粒子直徑一般不超過1nm,膠體粒子介于溶液中溶質粒子和濁液粒子之間,其直徑在1~100nm。
小于可見光波長(400nm~700nm),因此,當可見光透過膠體時會產生明顯的散射作用。而對于真溶液,雖然分子或離子更小,但因散射光的強度隨散射粒子體積的減小而明顯減弱,因此,真溶液對光的散射作用很微弱。此外,散射光的強度還隨分散體系中粒子濃度增大而增強。
所以說,膠體能有丁達爾現象,而溶液幾乎沒有,可以采用丁達爾現象來區(qū)分膠體和溶液,注意:當有光線通過懸濁液時有時也會出現光路,但是由于懸濁液中的顆粒對光線的阻礙過大,使得產生的光路很短。
丁達爾效應的應用
現在這種現象經常經常被用來區(qū)分是膠體還是溶液。光束通過,出現的通道很短的時候其實這并不是膠體或者溶液,而是懸濁液。如果沒有出現通道那么就是溶液,有長長的光線通道出現那么就是膠體。
目前生活中的丁達爾效應大多數是用來區(qū)分膠體和溶液的,而在生活中很多的自然現象也可以看到,像是陽光透過樹葉留下一道光,其實這也可以用丁達爾現象來解釋。
5.高一上冊化學必修一知識點梳理
一、物質的分類
1、常見的物質分類法是樹狀分類法和交叉分類法。
2、混合物按分散系大小分為溶液、膠體和濁液三種,中間大小分散質直徑大小為1nm—100nm之間,這種分散系處于介穩(wěn)狀態(tài),膠粒帶電荷是該分散系較穩(wěn)定的主要原因。
3、濁液用靜置觀察法先鑒別出來,溶液和膠體用丁達爾現象鑒別。
當光束通過膠體時,垂直方向可以看到一條光亮的通路,這是由于膠體粒子對光線散射形成的。
4、膠體粒子能通過濾紙,不能通過半透膜,所以用半透膜可以分離提純出膠體,這種方法叫做滲析。
5、在25ml沸水中滴加5—6滴FeCl3飽和溶液,煮沸至紅褐色,即制得Fe(OH)3膠體溶液。該膠體粒子帶正電荷,在電場力作用下向陰極移動,從而該極顏色變深,另一極顏色變淺,這種現象叫做電泳。
二、離子反應
1、常見的電解質指酸、堿、鹽、水和金屬氧化物,它們在溶于水或熔融時都能電離出自由移動的離子,從而可以導電。
2、非電解質指電解質以外的化合物(如非金屬氧化物,氮化物、有機物等);單質和溶液既不是電解質也不是非電解質。
3、在水溶液或熔融狀態(tài)下有電解質參與的反應叫離子反應。
4、強酸(HCl、H2SO4、HNO3)、強堿(NaOH、KOH、Ba(OH)2)和大多數鹽(NaCl、BaSO4、Na2CO3、NaHSO4)溶于水都完全電離,所以電離方程式中間用“==”。
5、用實際參加反應的離子符號來表示反應的式子叫離子方程式。
在正確書寫化學方程式基礎上可以把強酸、強堿、可溶性鹽寫成離子方程式,其他不能寫成離子形式。
6、復分解反應進行的條件是至少有沉淀、氣體和水之一生成。
7、離子方程式正誤判斷主要含
①符合事實
②滿足守恒(質量守恒、電荷守恒、得失電子守恒)
③拆分正確(強酸、強堿、可溶鹽可拆)
④配比正確(量的多少比例不同)。
8、常見不能大量共存的離子:
①發(fā)生復分解反應(沉淀、氣體、水或難電離的酸或堿生成)
②發(fā)生氧化還原反應(MnO4-、ClO-、H++NO3-、Fe3+與S2-、HS-、SO32-、Fe2+、I-)
③絡合反應(Fe3+、Fe2+與SCN-)
④注意隱含條件的限制(顏色、酸堿性等)。
三、氧化還原反應
1、氧化還原反應的本質是有電子的轉移,氧化還原反應的特征是有化合價的升降。
2、失去電子(偏離電子)→化合價升高→被氧化→是還原劑;升價后生成氧化產物。還原劑具有還原性。
得到電子(偏向電子)→化合價降低→被還原→是氧化劑;降價后生成還原產物,氧化劑具有氧化性。
3、常見氧化劑有:Cl2、O2、濃H2SO4、HNO3、KMnO4(H+)、H2O2、ClO-、FeCl3等,
常見還原劑有:Al、Zn、Fe;C、H2、CO、SO2、H2S;SO32-、S2-、I-、Fe2+等
4、氧化還原強弱判斷法
①知反應方向就知道“一組強弱”
②金屬或非金屬單質越活潑對應的離子越不活潑(即金屬離子氧化性越弱、非金屬離子還原性越弱)
③濃度、溫度、氧化或還原程度等也可以判斷(越容易氧化或還原則對應能力越強)。