高三數學必修二知識點整理

字號:


    與高一高二不同之處在于,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。高三頻道為你精心準備了《高三數學必修二知識點整理》助你金榜題名!
    1.高三數學必修二知識點整理
    (一)導數第一定義
    設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義
    (二)導數第二定義
    設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義
    (三)導函數與導數
    如果函數y=f(x)在開區(qū)間I內每一點都可導,就稱函數f(x)在區(qū)間I內可導。這時函數y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。
    2.高三數學必修二知識點整理
    1.對于函數f(x),如果對于定義域內任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數;
    2.對于函數f(x),如果對于定義域內任意一個x,都有f(-x)=f(x),那么f(x)為偶函數;
    3.一般地,對于函數y=f(x),定義域內每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關于點(a,b)成中心對稱;
    4.一般地,對于函數y=f(x),定義域內每一個自變量x都有f(a+x)=f(a-x),則它的圖象關于x=a成軸對稱。
    5.函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
    6.由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
    3.高三數學必修二知識點整理
    第一章:空間幾何。三視圖和直觀圖的繪制不算難。但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物。這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推。有必要的還要在做題時結合草圖,不能單憑想象。后面的錐體柱體臺體的表面積和體積,把公式記牢問題就不大。做題表求表面積時注意好到底有幾個面,到底有沒有上下底這類問題就可以。
    第二章:點、直線、平面之間的位置關系。這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生要多看圖,自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。關于這一章的內容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,難度在于對這個概念無法理解,即知道有這個概念,但就是無法在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
    第三章:直線與方程。這一章主要講斜率與直線的位置關系。只要搞清楚直線平行、垂直的斜率表示問題就不大了。需要格外注意的是當直線垂直時斜率不存在的情況,這是??键c。另外直線方程的幾種形式,記得一般公式會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,記住公式,直接套用。
    第四章:圓與方程。能熟練的把一般式方程轉化為標準方程,通常的考試形式是等式的一遍含根號,另一邊不含,這時就要注意開方后定義域或值域的限制;通過點到點的距離、點到直線的距離與圓半徑的大小關系判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交直線的多種情況,這也是常考點。
    4.高三數學必修二知識點整理
    ①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
    ②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.
    特殊棱錐的頂點在底面的射影位置:
    ①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.
    ②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.
    ③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.
    ④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.
    ⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.
    ⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.
    ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;
    ⑧每個四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑.
    5.高三數學必修二知識點整理
    ⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
    ⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用
    ⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用
    ⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用
    ⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用
    ⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用
    ⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規(guī)劃、圓、直線與圓的位置關系
    ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
    ⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
    ⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
    ⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
    ⑿導數:導數的概念、求導、導數的應用
    ⒀復數:復數的概念與運算