高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補充。以數(shù)學為例,除去不同學校教學進度的不同,我們會在高二接觸到更為深入的函數(shù),也將開始學習從未接觸過的復(fù)數(shù)、圓錐曲線等題型。高二頻道為你整理了《高二數(shù)學必修三復(fù)習知識點》希望對你有所幫助!
1.高二數(shù)學必修三復(fù)習知識點
1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).
3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法,其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).
4.秦九韶算法是一種用于計算一元二次多項式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.
7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結(jié)果.
8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進制數(shù).
2.高二數(shù)學必修三復(fù)習知識點
(1)算法概念:在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
(2)算法的特點:
①有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
②確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當是模棱兩可.
③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
3.高二數(shù)學必修三復(fù)習知識點
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
4.高二數(shù)學必修三復(fù)習知識點
1.機械振動:機械振動是指物體在平衡位置附近所做的往復(fù)運動.
2.回復(fù)力:回復(fù)力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復(fù)力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的往復(fù)運動?;貜?fù)力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復(fù)力的來源。
3.平衡位置:平衡位置是指物體在振動中所受的回復(fù)力為零的位置,此時振子未必一定處于平衡狀態(tài).比如單擺經(jīng)過平衡位置時,雖然回復(fù)力為零,但合外力并不為零,還有向心力.
4.描述振動的物理量:
①位移總是相對于平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;
②振幅是物體離開平衡位置的距離,它描述的是振動的強弱,振幅是標量;
③頻率是單位時間內(nèi)完成全振動的次數(shù);
④相位用來描述振子振動的步調(diào)。如果振動的振動情況完全相反,則振動步調(diào)相反,為反相位.
5.簡諧運動:
A、簡諧運動的回復(fù)力和位移的變化規(guī)律;
B、單擺的周期。由本身性質(zhì)決定的周期叫固有周期,與擺球的質(zhì)量、振幅(振動的總能量)無關(guān)。
6.簡諧運動的表達式和圖象:x=Asin(ωt+φ0)簡諧運動的圖象描述的是一個質(zhì)點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規(guī)律(注意:振動圖象不是運動軌跡)。由振動圖象還可以確定振子某時刻的振動方向.
7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統(tǒng)只有重力或彈力做功,機械能守恒。振動的能量和振幅有關(guān),振幅越大,振動的能量越大。
5.高二數(shù)學必修三復(fù)習知識點
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù)。

