學(xué)會(huì)整合知識(shí)點(diǎn)。把需要學(xué)習(xí)的信息、掌握的知識(shí)分類,做成思維導(dǎo)圖或知識(shí)點(diǎn)卡片,會(huì)讓你的大腦、思維條理清醒,方便記憶、溫習(xí)、掌握。同時(shí),要學(xué)會(huì)把新知識(shí)和已學(xué)知識(shí)聯(lián)系起來,不斷糅合、完善你的知識(shí)體系。這樣能夠促進(jìn)理解,加深記憶。下面是為您整理的《人教版初2數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)》,僅供大家參考。
1.人教版初2數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
等腰三角形判定
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點(diǎn)與底邊兩端點(diǎn)距離相等。
3、兩邊上中線相等的三角形是等腰三角形;
4、如果一個(gè)三角形的一邊中線垂直這條邊(平分這個(gè)邊的對(duì)角),那么這個(gè)三角形是等腰三角形。
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點(diǎn)到底邊兩端點(diǎn)的距離相等。
3、如果三角形的頂角平分線垂直于這個(gè)角的對(duì)邊(平分對(duì)邊),那么這個(gè)三角形是等腰三角形;
4、三角形中兩個(gè)角的平分線相等,那么這個(gè)三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點(diǎn)和底邊兩端點(diǎn)距離相等。
3、如果一個(gè)三角形一邊上的高平分這條邊(平分這條邊的對(duì)角),那么這個(gè)三角形是等腰三角形;
4、有兩條高相等的三角形是等腰三角形。
2.人教版初2數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
多邊形
1、多邊形的概念:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角;多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。在定義中應(yīng)注意:
①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));
②首尾順次相連,二者缺一不可;
③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形.
2、多邊形的分類
多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形。
凸多邊形凹多邊形各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。
3、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
(1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。
(2)n邊形共有條對(duì)角線。
4、多邊形的內(nèi)角和外角
(1)多邊形的內(nèi)角和公式:n邊形的內(nèi)角和為(n-2)×180°
(2)多邊形的外角和等于360°,它與邊數(shù)的多少無關(guān)。
推論:
(1)內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少。每增加一條邊,內(nèi)角的和就增加180°(反過來也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍。
(2)多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少?zèng)]有鈍角。
3.人教版初2數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
三角形知識(shí)點(diǎn)
1、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等。
2、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。
3、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
4、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
5、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。
8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上。
9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合。
10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)。
函數(shù)與方程知識(shí)點(diǎn)
1、一次函數(shù)也叫做線性函數(shù),一般在X,Y坐標(biāo)軸中用一條直線來表示,當(dāng)一次函數(shù)中的一個(gè)變量的值確定的情況下,可以用一元一次方程來解答出另一個(gè)變量的值。
2、任何一個(gè)一元一次方程都可以轉(zhuǎn)化成ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值(從數(shù)的角度);從圖像上來看,就相當(dāng)于已知直線y=ax+b,確定它與x軸的交點(diǎn)橫坐標(biāo)的值(從形的角度)。
3、利用函數(shù)圖像解方程:-2x+2=0,可以轉(zhuǎn)化為求一次函數(shù)y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)。而y=-2x+2與x軸交點(diǎn)的橫坐標(biāo)為1,所以方程-2x+2=0的解為x=1。
注意:解一元一次方程ax+b=0(a≠0)與求函數(shù)y=ax+b(a≠0)的圖像與x軸交點(diǎn)的橫坐標(biāo)是同一個(gè)問題。不同的是前者從數(shù)的角度來解決問題,后者從形的角度來解決問題。
4、每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),從數(shù)的角度來看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)是何值;從形的角度來看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo),從而使方程組得出答案。
5、解答一次函數(shù)的作法最簡(jiǎn)單的就是列表法,取一個(gè)滿足一次函數(shù)表達(dá)式的兩個(gè)點(diǎn)的坐標(biāo),來確定另一個(gè)未知數(shù)的值。還有一個(gè)描點(diǎn)法。一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。通常情況下y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)即可畫出。