高一數(shù)學必修三知識點歸納

字號:

進入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態(tài)。高一頻道為正在努力學習的你整理了《高一數(shù)學必修三知識點歸納》,希望對你有幫助!
    1.高一數(shù)學必修三知識點歸納
    1.一些基本概念:
    (1)向量:既有大小,又有方向的量.
    (2)數(shù)量:只有大小,沒有方向的量.
    (3)有向線段的三要素:起點、方向、長度.
    (4)零向量:長度為0的向量.
    (5)單位向量:長度等于1個單位的向量.
    (6)平行向量(共線向量):方向相同或相反的非零向量.
    零向量與任一向量平行.
    (7)相等向量:長度相等且方向相同的向量.
    2.向量加法運算:
    ⑴三角形法則的特點:首尾相連.
    ⑵平行四邊形法則的特點:共起點
    2.高一數(shù)學必修三知識點歸納
    一、求復雜事件的概率:
    1.有些隨機事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗、統(tǒng)計的方法估計其發(fā)生的概率。
    2.對于作何一個隨機事件都有一個固定的概率客觀存在。
    3.對隨機事件做大量試驗時,根據(jù)重復試驗的特征,我們確定概率時應當注意幾點:
    (1)盡量經(jīng)歷反復實驗的過程,不能想當然的作出判斷;
    (2)做實驗時應當在相同條件下進行;
    (3)實驗的次數(shù)要足夠多,不能太少;
    (4)把每一次實驗的結(jié)果準確,實時的做好記錄;
    (5)分階段分別從第一次起計算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計圖直觀的表示出來;
    (6)觀察分析統(tǒng)計圖,找出頻率變化的逐漸穩(wěn)定值,并用這個穩(wěn)定值估計事件發(fā)生的概率,這種估計概率的方法的優(yōu)點是直觀,缺點是估計值必須在實驗后才能得到,無法事件預測。
    二、判斷游戲公平:
    游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。
    三、概率綜合運用:
    概率可以和很多知識綜合命題,主要涉及平面圖形、統(tǒng)計圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。
    3.高一數(shù)學必修三知識點歸納
    1、高考數(shù)學中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
    2、平面向量和三角函數(shù)。
    重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
    3、數(shù)列
    數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
    4、空間向量和立體幾何
    在里面重點考察兩個方面:一個是證明;一個是計算。
    5、概率和統(tǒng)計
    這一板塊主要是屬于數(shù)學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。
    6、解析幾何
    這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是2008年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
    7、押軸題
    考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
    高考數(shù)學知識點歸納總結(jié):參數(shù)方程定義
    一般的,在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數(shù)t的函數(shù)x=f(t)、y=g(t)
    并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數(shù)方程,聯(lián)系x,y的變數(shù)t叫做變參數(shù),簡稱參數(shù),相對于參數(shù)方程而言,直接給出點的坐標間關(guān)系的方程叫做普通方程。(注意:參數(shù)是聯(lián)系變數(shù)x,y的橋梁,可以是一個有物理意義和幾何意義的變數(shù),也可以是沒有實際意義的變數(shù)。
    圓的參數(shù)方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標r為圓半徑θ為參數(shù)。
    橢圓的參數(shù)方程x=acosθy=bsinθa為長半軸長b為短半軸長θ為參數(shù)。
    雙曲線的參數(shù)方程x=asecθ(正割)y=btanθa為實半軸長b為虛半軸長θ為參數(shù)。
    拋物線的參數(shù)方程x=2pt?y=2ptp表示焦點到準線的距離t為參數(shù)。
    直線的參數(shù)方程x=x'+tcosay=y'+tsina,x',y'和a表示直線經(jīng)過(x',y'),且傾斜角為a,t為參數(shù)。
    4.高一數(shù)學必修三知識點歸納
    (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
    (7)函數(shù)總是通過(0,1)這點。
    (8)顯然指數(shù)函數(shù)XX。
    5.高一數(shù)學必修三知識點歸納
    1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
    2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).
    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).
    4.秦九韶算法是一種用于計算一元二次多項式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.
    7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結(jié)果.
    8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).