高三年級數(shù)學(xué)知識點復(fù)習(xí)

字號:

與高一高二不同之處在于,此時復(fù)習(xí)力學(xué)部分知識是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。高三頻道為你精心準(zhǔn)備了《高三年級數(shù)學(xué)知識點復(fù)習(xí)》助你金榜題名!
    1.高三年級數(shù)學(xué)知識點復(fù)習(xí)
    1.集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件
    2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用
    3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和
    4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
    5.平面向量:初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用
    6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
    7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
    8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
    9.直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
    10.排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用
    11.概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
    12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
    13.復(fù)數(shù):復(fù)數(shù)的概念與運算
    2.高三年級數(shù)學(xué)知識點復(fù)習(xí)
    1.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);
    2.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=f(x),那么f(x)為偶函數(shù);
    3.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;
    4.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對稱。
    5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
    6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).
    3.高三年級數(shù)學(xué)知識點復(fù)習(xí)
    1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
    2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:
    方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
    3、函數(shù)零點的求法:
    求函數(shù)的零點:
    (1)(代數(shù)法)求方程的實數(shù)根;
    (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
    4、二次函數(shù)的零點:
    二次函數(shù).
    1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
    2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
    3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
    4.高三年級數(shù)學(xué)知識點復(fù)習(xí)
    (一)導(dǎo)數(shù)第一定義
    設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
    (二)導(dǎo)數(shù)第二定義
    設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
    (三)導(dǎo)函數(shù)與導(dǎo)數(shù)
    如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
    (四)單調(diào)性及其應(yīng)用
    1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
    (1)求f¢(x)
    (2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
    2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
    (1)求f¢(x)
    (2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
    5.高三年級數(shù)學(xué)知識點復(fù)習(xí)
    1、集合的概念
    集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
    集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
    2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:
    元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
    3、集合中元素的特性
    (1)確定性:設(shè)A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
    (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
    (3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。
    4、集合的分類
    集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
    有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
    無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的.,因此他們是無限集。
    特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。
    5、特定的集合的表示
    為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
    (1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。
    (2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
    (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。
    (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。
    (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。