高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補充。以數(shù)學(xué)為例,除去不同學(xué)校教學(xué)進度的不同,我們會在高二接觸到更為深入的函數(shù),也將開始學(xué)習(xí)從未接觸過的復(fù)數(shù)、圓錐曲線等題型。高二頻道為你整理了《高二必修三數(shù)學(xué)知識點總結(jié)》希望對你有所幫助!
1.高二必修三數(shù)學(xué)知識點總結(jié)
復(fù)合函數(shù)定義域
若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復(fù)合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數(shù)的定義域主要應(yīng)考慮以下幾點:
⑴當(dāng)為整式或奇次根式時,R的值域;
⑵當(dāng)為偶次根式時,被開方數(shù)不小于0(即≥0);
⑶當(dāng)為分式時,分母不為0;當(dāng)分母是偶次根式時,被開方數(shù)大于0;
⑷當(dāng)為指數(shù)式時,對零指數(shù)冪或負(fù)整數(shù)指數(shù)冪,底不為0。
⑸當(dāng)是由一些基本函數(shù)通過四則運算結(jié)合而成的,它的定義域應(yīng)是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。
⑺由實際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求
⑻對于含參數(shù)字母的函數(shù),求定義域時一般要對字母的取值情況進行分類討論,并要注意函數(shù)的定義域為非空集合。
⑼對數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。
⑽三角函數(shù)中的切割函數(shù)要注意對角變量的限制。
復(fù)合函數(shù)常見題型
(ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。
2.高二必修三數(shù)學(xué)知識點總結(jié)
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
3.高二必修三數(shù)學(xué)知識點總結(jié)
概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:
(1)事件A發(fā)生且事件B不發(fā)生;
(2)事件A不發(fā)生且事件B發(fā)生;
(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;
1)事件A發(fā)生B不發(fā)生;
2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
4.高二必修三數(shù)學(xué)知識點總結(jié)
1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).
3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).
4.秦九韶算法是一種用于計算一元二次多項式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.
7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結(jié)果.
8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進制數(shù).
5.高二必修三數(shù)學(xué)知識點總結(jié)
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實際的比例結(jié)構(gòu)。

