高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)

字號(hào):


    高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識(shí)交叉多、綜合性強(qiáng),以及考查的知識(shí)和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。為各位同學(xué)整理了《高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)》,希望對(duì)您的學(xué)習(xí)有所幫助!
    1.高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)
    一)兩角和差公式
    sin(A+B)=sinAcosB+cosAsinB
    sin(A-B)=sinAcosB-sinBcosA?
    cos(A+B)=cosAcosB-sinAsinB
    cos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)
    tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    二)用以上公式可推出下列二倍角公式
    tan2A=2tanA/[1-(tanA)^2]
    cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
    sin2A=2sinA_cosA
    三)半角的只需記住這個(gè):
    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
    四)用二倍角中的余弦可推出降冪公式
    (sinA)^2=(1-cos2A)/2
    (cosA)^2=(1+cos2A)/2
    五)用以上降冪公式可推出以下常用的化簡(jiǎn)公式
    1-cosA=sin^(A/2)_2
    1-sinA=cos^(A/2)_2
    2.高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)
    【公式一:】
    設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二:】
    設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三:】
    任意角α與-α的三角函數(shù)值之間的關(guān)系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四:】
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五:】
    利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六:】
    π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    3.高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長(zhǎng),S=6a2,V=a3
    4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    4.高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)
    直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。
    直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
    直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
    5.高一年級(jí)必修四數(shù)學(xué)知識(shí)點(diǎn)
    方程的根與函數(shù)的零點(diǎn)
    1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
    2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).
    3、函數(shù)零點(diǎn)的求法:
    (1)(代數(shù)法)求方程的實(shí)數(shù)根;
    (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
    4、二次函數(shù)的零點(diǎn):
    (1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
    (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).