高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點

字號:

進(jìn)入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進(jìn)入學(xué)習(xí)狀態(tài)。高一頻道為正在努力學(xué)習(xí)的你整理了《高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點》,希望對你有幫助!
    1.高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點
    1.“包含”關(guān)系—子集
    注意:有兩種可能
    (1)A是B的一部分,
    (2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
    實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
    即:
    ①任何一個集合是它本身的子集。AA
    ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AB,BC,那么AC
    ④如果AB同時BA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
    有n個元素的集合,含有2n個子集,2n-1個真子集
    2.高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點
    銳角三角函數(shù)公式
    sinα=∠α的對邊/斜邊
    cosα=∠α的鄰邊/斜邊
    tanα=∠α的對邊/∠α的鄰邊
    cotα=∠α的鄰邊/∠α的對邊
    倍角公式
    Sin2A=2SinA?CosA
    Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
    tan2A=(2tanA)/(1-tanA^2)
    (注:SinA^2是sinA的平方sin2(A))
    三倍角公式
    sin3α=4sinα·sin(π/3+α)sin(π/3-α)
    cos3α=4cosα·cos(π/3+α)cos(π/3-α)
    tan3a=tana·tan(π/3+a)·tan(π/3-a)
    三倍角公式推導(dǎo)
    sin3a
    =sin(2a+a)
    =sin2acosa+cos2asina
    輔助角公式
    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
    sint=B/(A^2+B^2)^(1/2)
    cost=A/(A^2+B^2)^(1/2)
    tant=B/A
    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降冪公式
    sin^2(α)=(1-cos(2α))/2=versin(2α)/2
    cos^2(α)=(1+cos(2α))/2=covers(2α)/2
    tan^2(α)=(1-cos(2α))/(1+cos(2α))
    推導(dǎo)公式
    tanα+cotα=2/sin2α
    tanα-cotα=-2cot2α
    1+cos2α=2cos^2α
    1-cos2α=2sin^2α
    1+sinα=(sinα/2+cosα/2)^2
    =2sina(1-sin2a)+(1-2sin2a)sina
    =3sina-4sin3a
    cos3a
    =cos(2a+a)
    =cos2acosa-sin2asina
    =(2cos2a-1)cosa-2(1-sin2a)cosa
    =4cos3a-3cosa
    sin3a=3sina-4sin3a
    =4sina(3/4-sin2a)
    =4sina[(√3/2)2-sin2a]
    =4sina(sin260°-sin2a)
    =4sina(sin60°+sina)(sin60°-sina)
    =4sina·2sin[(60+a)/2]cos[(60°-a)/2]·2sin[(60°-a)/2]cos[(60°-a)/2]
    =4sinasin(60°+a)sin(60°-a)
    cos3a=4cos3a-3cosa
    =4cosa(cos2a-3/4)
    =4cosa[cos2a-(√3/2)2]
    =4cosa(cos2a-cos230°)
    =4cosa(cosa+cos30°)(cosa-cos30°)
    =4cosa·2cos[(a+30°)/2]cos[(a-30°)/2]·{-2sin[(a+30°)/2]sin[(a-30°)/2]}
    =-4cosasin(a+30°)sin(a-30°)
    =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
    =-4cosacos(60°-a)[-cos(60°+a)]
    =4cosacos(60°-a)cos(60°+a)
    上述兩式相比可得
    tan3a=tanatan(60°-a)tan(60°+a)
    半角公式
    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
    cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
    sin^2(a/2)=(1-cos(a))/2
    cos^2(a/2)=(1+cos(a))/2
    tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和
    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
    兩角和差
    cos(α+β)=cosα·cosβ-sinα·sinβ
    cos(α-β)=cosα·cosβ+sinα·sinβ
    sin(α±β)=sinα·cosβ±cosα·sinβ
    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    和差化積
    sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
    sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
    cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
    cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
    tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
    tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
    積化和差
    sinαsinβ=[cos(α-β)-cos(α+β)]/2
    cosαcosβ=[cos(α+β)+cos(α-β)]/2
    sinαcosβ=[sin(α+β)+sin(α-β)]/2
    cosαsinβ=[sin(α+β)-sin(α-β)]/2
    誘導(dǎo)公式
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(—a)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    sin(π-α)=sinα
    cos(π-α)=-cosα
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tanA=sinA/cosA
    tan(π/2+α)=-cotα
    tan(π/2-α)=cotα
    tan(π-α)=-tanα
    tan(π+α)=tanα
    3.高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
    性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
    排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。
    4.高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點
    空間兩條直線只有三種位置關(guān)系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
    2、若從有無公共點的角度看可分為兩類:
    (1)有且僅有一個公共點——相交直線;
    (2)沒有公共點——平行或異面
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個公共點
    ②直線和平面相交——有且只有一個公共點
    直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
    5.高一年級數(shù)學(xué)必修一復(fù)習(xí)知識點
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)