高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)

字號:


    高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識交叉多、綜合性強(qiáng),以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學(xué)習(xí)方法。為各位同學(xué)整理了《高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)》,希望對您的學(xué)習(xí)有所幫助!
    1.高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)
    1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。
    2.規(guī)定若線段AB的端點A為起點,B為終點,則線段就具有了從起點A到終點B的方向和長度。具有方向和長度的線段叫做有向線段。
    3.向量的模:向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。
    注:向量的模是非負(fù)實數(shù),是可以比較大小的。因為方向不能比較大小,所以向量也就不能比較大小。對于向量來說“大于”和“小于”的概念是沒有意義的。
    4.單位向量:長度為一個單位(即模為1)的向量,叫做單位向量與向量a同向,且長度為單位1的向量,叫做a方向上的單位向量,記作a0。
    5.長度為0的向量叫做零向量,記作0。零向量的始點和終點重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。
    2.高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)
    多面體
    1、棱柱
    棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
    棱柱的性質(zhì)
    (1)側(cè)棱都相等,側(cè)面是平行四邊形
    (2)兩個底面與平行于底面的截面是全等的多邊形
    (3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形
    2、棱錐
    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
    棱錐的性質(zhì):
    (1)側(cè)棱交于一點。側(cè)面都是三角形
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
    3、正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個特殊的直角三角形
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
    3.高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點的直線的斜率公式:
    注意下面四點:
    (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
    4.高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)
    冪函數(shù)
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
    性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
    排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。
    5.高一年級數(shù)學(xué)上冊知識點復(fù)習(xí)
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
    直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
    直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
    直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。