高三年級必修三數學知識點

字號:


    高三學生很快就會面臨繼續(xù)學業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經驗的學生來說,無疑是個困難的選擇。如何度過這重要又緊張的一年,我們可以從提高學習效率來著手!高三頻道為各位同學整理了《高三年級必修三數學知識點》,希望你努力學習,圓金色六月夢!
    1.高三年級必修三數學知識點
    1.定義:
    用符號〉,=,〈號連接的式子叫不等式。
    2.性質:
    ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
    ②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
    ③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
    4.考點:
    ①解一元一次不等式(組)
    ②根據具體問題中的數量關系列不等式(組)并解決簡單實際問題
    ③用數軸表示一元一次不等式(組)的解集
    2.高三年級必修三數學知識點
    定義:
    形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
    定義域和值域:
    當a為不同的數值時,冪函數的定義域的不同情況如下:
    如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。
    性質:
    對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
    排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
    排除了為0這種可能,即對于x
    排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
    3.高三年級必修三數學知識點
    (一)導數第一定義
    設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義
    (二)導數第二定義
    設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義
    (三)導函數與導數
    如果函數y=f(x)在開區(qū)間I內每一點都可導,就稱函數f(x)在區(qū)間I內可導。這時函數y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。
    (四)單調性及其應用
    1.利用導數研究多項式函數單調性的一般步驟
    (1)求f¢(x)
    (2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
    2.用導數求多項式函數單調區(qū)間的一般步驟
    (1)求f¢(x)
    (2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
    4.高三年級必修三數學知識點
    總體和樣本
    ①在統(tǒng)計學中,把研究對象的全體叫做總體。
    ②把每個研究對象叫做個體。
    ③把總體中個體的總數叫做總體容量。
    ④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數稱為樣本容量。
    簡單隨機抽樣
    也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。
    簡單隨機抽樣常用的方法
    ①抽簽法
    ②隨機數表法
    ③計算機模擬法
    ④使用統(tǒng)計軟件直接抽取。
    在簡單隨機抽樣的樣本容量設計中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    抽簽法
    ①給調查對象群體中的每一個對象編號;
    ②準備抽簽的工具,實施抽簽;
    ③對樣本中的每一個個體進行測量或調查。
    5.高三年級必修三數學知識點
    (1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數函數的值域為大于0的實數集合。
    (3)函數圖形都是下凹的。
    (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
    (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
    (6)函數總是在某一個方向上無限趨向于X軸,永不相交。
    (7)函數總是通過(0,1)這點。
    (8)顯然指數函數無XX。