高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)

字號(hào):


    在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)》希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    函數(shù)的周期性
    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
    2.高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    1.函數(shù)的奇偶性
    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);
    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
    (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
    (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
    2.復(fù)合函數(shù)的有關(guān)問(wèn)題
    (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。
    (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
    3.函數(shù)圖像(或方程曲線的對(duì)稱性)
    (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
    (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;
    3.高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    一、充分條件和必要條件
    當(dāng)命題“若A則B”為真時(shí),A稱為B的充分條件,B稱為A的必要條件。
    二、充分條件、必要條件的常用判斷法
    1.定義法:判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可。
    2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。
    3.集合法
    在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:
    若A⊆B,則p是q的充分條件。
    若A⊇B,則p是q的必要條件。
    若A=B,則p是q的充要條件。
    若A⊈B,且B⊉A,則p是q的既不充分也不必要條件。
    4.高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    1、科學(xué)記數(shù)法:把一個(gè)數(shù)字寫(xiě)成的形式的記數(shù)方法。
    2、統(tǒng)計(jì)圖:形象地表示收集到的數(shù)據(jù)的圖。
    3、扇形統(tǒng)計(jì)圖:用圓和扇形來(lái)表示總體和部分的關(guān)系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計(jì)圖中,每個(gè)部分占總體的百分比等于該部分對(duì)應(yīng)的扇形圓心角與360°的比。
    4、條形統(tǒng)計(jì)圖:清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。
    5、折線統(tǒng)計(jì)圖:清楚地反映事物的變化情況。
    6、確定事件包括:肯定會(huì)發(fā)生的必然事件和一定不會(huì)發(fā)生的不可能事件。
    7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
    8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
    9、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
    10、游戲雙方公平:雙方獲勝的可能性相同。
    11、算數(shù)平均數(shù):簡(jiǎn)稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)
    12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計(jì)算簡(jiǎn)單,受極端值得影響較小。
    13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關(guān)系不大。
    14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫(huà)了一組數(shù)據(jù)的“平均水平”。
    15、普查:為了一定目的對(duì)考察對(duì)象進(jìn)行全面調(diào)查;考察對(duì)象全體叫總體,每個(gè)考察對(duì)象叫個(gè)體。
    16、抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查;從總體中抽出的一部分個(gè)體叫樣本(有代表性)。
    17、隨機(jī)調(diào)查:按機(jī)會(huì)均等的原則進(jìn)行調(diào)查,總體中每個(gè)個(gè)體被調(diào)查的概率相同。
    18、頻數(shù):每次對(duì)象出現(xiàn)的次數(shù)。
    19、頻率:每次對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值。
    20、級(jí)差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫(huà)數(shù)據(jù)的離散程度。
    21、方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫(huà)數(shù)據(jù)的離散程度。
    21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根刻畫(huà)數(shù)據(jù)的離散程度。
    23、一組數(shù)據(jù)的級(jí)差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。
    24、利用樹(shù)狀圖或表格方便求出某事件發(fā)生的概率。
    25、兩個(gè)對(duì)比圖像中,坐標(biāo)軸上同一單位長(zhǎng)度表示的意義一致,縱坐標(biāo)從0開(kāi)始畫(huà)。
    5.高二數(shù)學(xué)必修一復(fù)習(xí)知識(shí)點(diǎn)
    集合的運(yùn)算
    1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.
    記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
    2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
    3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
    A∪φ=AA∪B=B∪A.