高二數(shù)學下冊重點知識歸納

字號:

只有高效的學習方法,才可以很快的掌握知識的重難點。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學習,就能很快的掌握知識。高二頻道為你整理了《高二數(shù)學下冊重點知識歸納》希望對你有幫助!
    1.高二數(shù)學下冊重點知識歸納
    1、科學記數(shù)法:把一個數(shù)字寫成的形式的記數(shù)方法。
    2、統(tǒng)計圖:形象地表示收集到的數(shù)據(jù)的圖。
    3、扇形統(tǒng)計圖:用圓和扇形來表示總體和部分的關系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計圖中,每個部分占總體的百分比等于該部分對應的扇形圓心角與360°的比。
    4、條形統(tǒng)計圖:清楚地表示出每個項目的具體數(shù)目。
    5、折線統(tǒng)計圖:清楚地反映事物的變化情況。
    6、確定事件包括:肯定會發(fā)生的必然事件和一定不會發(fā)生的不可能事件。
    7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
    8、事件的概率:可用事件結果除以所以可能結果求得理論概率。
    9、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
    10、游戲雙方公平:雙方獲勝的可能性相同。
    11、算數(shù)平均數(shù):簡稱“平均數(shù)”,最常用,受極端值得影響較大;加權平均數(shù)12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計算簡單,受極端值得影響較小。
    13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關系不大。
    14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫了一組數(shù)據(jù)的“平均水平”。
    15、普查:為了一定目的對考察對象進行全面調(diào)查;考察對象全體叫總體,每個考察對象叫個體。
    16、抽樣調(diào)查:從總體中抽取部分個體進行調(diào)查;從總體中抽出的一部分個體叫樣本(有代表性)。
    17、隨機調(diào)查:按機會均等的原則進行調(diào)查,總體中每個個體被調(diào)查的概率相同。
    18、頻數(shù):每次對象出現(xiàn)的次數(shù)。
    19、頻率:每次對象出現(xiàn)的次數(shù)與總次數(shù)的比值。
    20、級差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫數(shù)據(jù)的離散程度。
    21、方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫數(shù)據(jù)的離散程度。
    21、標準方差:方差的算數(shù)平方根刻畫數(shù)據(jù)的離散程度。
    23、一組數(shù)據(jù)的級差、方差、標準方差越小,這組數(shù)據(jù)就越穩(wěn)定。
    24、利用樹狀圖或表格方便求出某事件發(fā)生的概率。
    25、兩個對比圖像中,坐標軸上同一單位長度表示的意義一致,縱坐標從0開始畫。
    2.高二數(shù)學下冊重點知識歸納
    導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
    導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
    不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
    對于可導的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質(zhì)上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
    3.高二數(shù)學下冊重點知識歸納
    數(shù)列定義:
    如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
    等差數(shù)列的通項公式為:an=a1+(n-1)d(1)
    前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
    以上n均屬于正整數(shù)。
    解釋說明:
    從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0。
    在等差數(shù)列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數(shù)列的平均數(shù)。
    且任意兩項am,an的關系為:an=am+(n-m)d
    它可以看作等差數(shù)列廣義的通項公式。
    公式:
    從等差數(shù)列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
    若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
    基本公式:
    和=(首項+末項)×項數(shù)÷2
    項數(shù)=(末項-首項)÷公差+1
    首項=2和÷項數(shù)-末項
    末項=2和÷項數(shù)-首項
    末項=首項+(項數(shù)-1)×公差
    4.高二數(shù)學下冊重點知識歸納
    空間中的垂直問題
    (1)線線、面面、線面垂直的定義
    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
    ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
    ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
    (2)垂直關系的判定和性質(zhì)定理
    ①線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
    性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
    ②面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
    性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
    5.高二數(shù)學下冊重點知識歸納
    復數(shù)的概念:
    形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
    復數(shù)的表示:
    復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
    復數(shù)的幾何意義:
    (1)復平面、實軸、虛軸:
    點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
    (2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應關系,即
    這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
    這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
    復數(shù)的模:
    復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
    虛數(shù)單位i:
    (1)它的平方等于-1,即i2=-1;
    (2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
    (3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
    (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
    復數(shù)模的性質(zhì):
    復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:
    對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。