高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)

字號(hào):

在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)》希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)
    一、導(dǎo)數(shù)的應(yīng)用
    1.用導(dǎo)數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
    2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
    1)費(fèi)用、成本最省問(wèn)題
    2)利潤(rùn)、收益問(wèn)題
    3)面積、體積最(大)問(wèn)題
    二、推理與證明
    1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,*的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,*的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
    2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
    三、不等式
    對(duì)于含有參數(shù)的一元二次不等式解的討論
    1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
    2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
    2.高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)
    一、曲線與方程
    1.橢圓
    橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對(duì)本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn).橢圓方面的知識(shí)與向量等知識(shí)的綜合考查命題趨勢(shì)較強(qiáng)。
    2.雙曲線
    標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法.利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點(diǎn)和雙曲線上的任意一點(diǎn)的坐標(biāo)都可以運(yùn)用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點(diǎn)曲線系方程求解,其要點(diǎn)是根據(jù)題目中的一個(gè)條件寫出含一個(gè)參數(shù)的共焦點(diǎn)的二次曲線系方程,再根據(jù)另外一個(gè)條件求出這個(gè)參數(shù).
    3.拋物線
    1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。
    2)韋達(dá)定理的熟練運(yùn)用,可以防止運(yùn)算復(fù)雜的焦點(diǎn)坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。
    3)焦點(diǎn)弦的幾何性質(zhì)是答題中容易忽略的問(wèn)題,在復(fù)雜的求解拋物線方程中,運(yùn)用好這方面的知識(shí)能夠少走很多彎路。
    用點(diǎn)差法解圓錐曲線的中點(diǎn)弦問(wèn)題
    二、空間幾何體
    1.空間幾何體的考查主要以其識(shí)別和應(yīng)用為主,以填空題的形式出現(xiàn),分值大約在5分。對(duì)空間幾何體的形狀、位置關(guān)系、數(shù)量特征、表面積和體積的命題需要加以關(guān)注。
    2.球的面積和體積:計(jì)算球的面積和體積就要求出球的半徑,在具體的空間幾何體中,首先要確定球心的位置,這樣才能根據(jù)已知數(shù)據(jù)求出半徑,除球以外的空間幾何體在求體積時(shí)都離不開(kāi)”高“,要注意使用線面垂直的相關(guān)定理確定高線。
    三、正弦定理和余弦定理
    1.正弦定理
    在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R
    2.余弦定理
    三角形中,任意一邊的平方等于另外兩邊的平方和減去另兩邊及其夾角的余弦的積的兩倍。
    3.高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)
    一、隨機(jī)事件
    主要掌握好(三四五)
    (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
    (2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
    (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。
    二、概率定義
    (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;
    (2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;
    (3)幾何概率:樣本空間中的元素有無(wú)窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過(guò)子集圖形的大小與樣本空間圖形的大小的比來(lái)計(jì)算;
    (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
    三、概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
    如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
    (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問(wèn)題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.
    4.高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)
    導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
    導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。
    不是所有的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
    對(duì)于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分基本定理說(shuō)明了求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
    設(shè)函數(shù)=f(x)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時(shí),相應(yīng)地函數(shù)取得增量Δ=f(x0+Δx)-f(x0);如果Δ與Δx之比當(dāng)Δx→0時(shí)極限存在,則稱函數(shù)=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限為函數(shù)=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),也記作'│x=x0或d/dx│x=x0
    5.高二數(shù)學(xué)下冊(cè)必修二重要知識(shí)點(diǎn)
    一、導(dǎo)數(shù)的應(yīng)用
    1、用導(dǎo)數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
    學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
    2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
    1)費(fèi)用、成本最省問(wèn)題
    2)利潤(rùn)、收益問(wèn)題
    3)面積、體積最(大)問(wèn)題
    二、推理與證明
    1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
    2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
    三、不等式
    對(duì)于含有參數(shù)的一元二次不等式解的討論
    1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
    2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。
    通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
    四、坐標(biāo)平面上的直線
    1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
    2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
    3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
    五、圓錐曲線
    1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
    2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
    上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。
    3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。