高一下冊數(shù)學(xué)??贾R點

字號:

高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學(xué)習(xí)方法。今天為各位同學(xué)整理了《高一下冊數(shù)學(xué)常考知識點》,希望對您的學(xué)習(xí)有所幫助!
    高一下冊數(shù)學(xué)??贾R點(一)
    定義:
    x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
    范圍:
    傾斜角的取值范圍是0°≤α<180°。
    理解:
    (1)注意“兩個方向”:直線向上的方向、x軸的正方向;
    (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
    意義:
    ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
    ②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;
    ③傾斜角相同,未必表示同一條直線。
    公式:
    k=tanα
    k>0時α∈(0°,90°)
    k<0時α∈(90°,180°)
    k=0時α=0°
    當α=90°時k不存在
    ax+by+c=0(a≠0)傾斜角為A,
    則tanA=-a/b,
    A=arctan(-a/b)
    當a≠0時,
    傾斜角為90度,即與X軸垂直
    高一下冊數(shù)學(xué)??贾R點(二)
    集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當于集合的名字,沒有任何實際的意義。
    將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。
    常用的有列舉法和描述法。
    1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
    2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數(shù)組成的集合表示為:{x|0    3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個集合。集合
    自然語言常用數(shù)集的符號:
    (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N*
    (2)非負整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負整數(shù)集內(nèi)也排除0的集,稱負整數(shù)集,記作Z-
    (3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z
    (4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負有理數(shù)集合分別記作Q+Q-)
    (5)全體實數(shù)的集合通常簡稱實數(shù)集,記作R(正實數(shù)集合記作R+;負實數(shù)記作R-)
    (6)復(fù)數(shù)集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
    Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關(guān)集合中的元素個數(shù)問題,我們把有限集合A的元素個數(shù)記為card(A)。
    集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實數(shù)集R正實數(shù)集R+負實數(shù)集R-整數(shù)集Z正整數(shù)集Z+負整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負有理數(shù)集Q-不含0的有理數(shù)集Q*