高二年級數(shù)學(xué)知識點講解

字號:


    在學(xué)習(xí)新知識的同時還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二年級數(shù)學(xué)知識點講解》希望對你的學(xué)習(xí)有所幫助!
    
【篇一】

    1.總體和樣本
    在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
    把每個研究對象叫做個體.
    把總體中個體的總數(shù)叫做總體容量.
    為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:
    研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
    2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
    機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
    3.簡單隨機抽樣常用的方法:
    抽簽法;隨機數(shù)表法;計算機模擬法;使用統(tǒng)計軟件直接抽取。
    在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
    4.抽簽法:
    (1)給調(diào)查對象群體中的每一個對象編號;
    (2)準(zhǔn)備抽簽的工具,實施抽簽
    (3)對樣本中的每一個個體進行測量或調(diào)查
    例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動情況。
    5.隨機數(shù)表法:
    例:利用隨機數(shù)表在所在的班級中抽取10位同學(xué)參加某項活動。
    系統(tǒng)抽樣
    1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
    把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
    K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
    前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
    2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
    分層抽樣
    1.分層抽樣(類型抽樣):
    先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
    兩種方法:
    1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
    2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
    2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
    分層標(biāo)準(zhǔn):
    (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
    (2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
    (3)以那些有明顯分層區(qū)分的變量作為分層變量。
    3.分層的比例問題:
    (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
    (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實際的比例結(jié)構(gòu)。
    用樣本的數(shù)字特征估計總體的數(shù)字特征
    1、本均值:
    2、樣本標(biāo)準(zhǔn)差:
    3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
    雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計,但這種估計是合理的,特別是當(dāng)樣本量很大時,它們確實反映了總體的信息。
    4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變
    (2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍
    (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;
    “去掉一個分,去掉一個最低分”中的科學(xué)道理
    兩個變量的線性相關(guān)
    1、概念:
    (1)回歸直線方程(2)回歸系數(shù)
    2.最小二乘法
    3.直線回歸方程的應(yīng)用
    (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關(guān)系
    (2)利用回歸方程進行預(yù)測;把預(yù)報因子(即自變量x)代入回歸方程對預(yù)報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。
    (3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。
    4.應(yīng)用直線回歸的注意事項
    (1)做回歸分析要有實際意義;
    (2)回歸分析前,先作出散點圖;
    (3)回歸直線不要外延。
    
【篇二】

    1、圓的定義
    平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
    2、圓的方程
    (x-a)^2+(y-b)^2=r^2
    (1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;
    (2)求圓方程的方法:
    一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
    另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
    3、直線與圓的位置關(guān)系
    直線與圓的位置關(guān)系有相離,相切,相交三種情況:
    (1)設(shè)直線,圓,圓心到l的距離為,則有;;
    (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
    (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
    練習(xí)題:
    2.若圓(x-a)2+(y-b)2=r2過原點,則()
    A.a2-b2=0B.a2+b2=r2
    C.a2+b2+r2=0D.a=0,b=0
    【解析】選B.因為圓過原點,所以(0,0)滿足方程,
    即(0-a)2+(0-b)2=r2,
    所以a2+b2=r2.