奧林匹克數(shù)學競賽或數(shù)學奧林匹克競賽,簡稱奧數(shù)。奧數(shù)體現(xiàn)了數(shù)學與奧林匹克體育運動精神的共通性:更快、更高、更強。下面是為大家?guī)淼摹俺踔袏W數(shù)經(jīng)典應(yīng)用題(含解析)”,歡迎大家閱讀。
1.在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?
解題思路:
根據(jù)題意,33米比18米長的米數(shù)正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然后求一根粗鋼管的長度。
答題:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長8米,一根細鋼管長5米。
2.水泥廠原計劃12天完成一項任務(wù),由于每天多生產(chǎn)水泥4.8噸,結(jié)果10天就完成了任務(wù),原計劃每天生產(chǎn)水泥多少噸?
解題思路:
由題意知,實際10天比原計劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產(chǎn)水泥24噸。
3.學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解題思路:
由題意知,實際10天比原計劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產(chǎn)水泥24噸。
4.學校舉辦語文、數(shù)學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數(shù)學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
解題思路:
參加語文競賽的36人中有參加數(shù)學競賽的,同樣參加數(shù)學競賽的38人中也有參加語文競賽的,如果把兩者加起來,那么既參加語文競賽又參加數(shù)學競賽的人數(shù)就統(tǒng)計了兩次,所以將參加語文競賽的人數(shù)加上參加數(shù)學競賽的人數(shù)再加上一科也沒參加的人數(shù)減去全班人數(shù)就是雙科都參加的人數(shù)。
答題:
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
5.學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?
解題思路:
由“2張桌子和5把椅子的價錢相等”這一條件,可以推出4張桌子就相當于10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當于買16把椅子共用640元。
答題:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的單價分別是100元、40元。
6.父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
解題思路:
5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。
答題:
解:(45-5)÷4+5=10+5=15(歲)
答:今年兒子15歲。
7.有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
解題思路:
“如果從甲桶倒入乙桶18千克,兩桶油就一樣重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答題:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原來甲桶有油48千克,乙桶有油12千克。
8.光明小學舉辦數(shù)學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
根據(jù)題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(jù)(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數(shù)。
答題:
解:(5×20-75)÷8=2(題)……5(分)
20-2-1=17(題)
答:答對17題,答錯2題,有1題沒答。
9.光明小學舉辦數(shù)學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
“從兩車頭相遇到兩車尾相離”,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據(jù)路程、速度和時間的關(guān)系,就可求得所需時間。
答題:
解:(240+264)÷(20+16)=504÷30=14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
10.一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
解題思路:
火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。
答題:
解:(600+1150)÷700=1750÷700=2.5(分)
答:火車通過隧道需2.5分。
1.在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?
解題思路:
根據(jù)題意,33米比18米長的米數(shù)正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然后求一根粗鋼管的長度。
答題:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長8米,一根細鋼管長5米。
2.水泥廠原計劃12天完成一項任務(wù),由于每天多生產(chǎn)水泥4.8噸,結(jié)果10天就完成了任務(wù),原計劃每天生產(chǎn)水泥多少噸?
解題思路:
由題意知,實際10天比原計劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產(chǎn)水泥24噸。
3.學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解題思路:
由題意知,實際10天比原計劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產(chǎn)水泥24噸。
4.學校舉辦語文、數(shù)學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數(shù)學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
解題思路:
參加語文競賽的36人中有參加數(shù)學競賽的,同樣參加數(shù)學競賽的38人中也有參加語文競賽的,如果把兩者加起來,那么既參加語文競賽又參加數(shù)學競賽的人數(shù)就統(tǒng)計了兩次,所以將參加語文競賽的人數(shù)加上參加數(shù)學競賽的人數(shù)再加上一科也沒參加的人數(shù)減去全班人數(shù)就是雙科都參加的人數(shù)。
答題:
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
5.學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?
解題思路:
由“2張桌子和5把椅子的價錢相等”這一條件,可以推出4張桌子就相當于10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當于買16把椅子共用640元。
答題:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的單價分別是100元、40元。
6.父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
解題思路:
5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。
答題:
解:(45-5)÷4+5=10+5=15(歲)
答:今年兒子15歲。
7.有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
解題思路:
“如果從甲桶倒入乙桶18千克,兩桶油就一樣重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答題:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原來甲桶有油48千克,乙桶有油12千克。
8.光明小學舉辦數(shù)學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
根據(jù)題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(jù)(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數(shù)。
答題:
解:(5×20-75)÷8=2(題)……5(分)
20-2-1=17(題)
答:答對17題,答錯2題,有1題沒答。
9.光明小學舉辦數(shù)學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
“從兩車頭相遇到兩車尾相離”,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據(jù)路程、速度和時間的關(guān)系,就可求得所需時間。
答題:
解:(240+264)÷(20+16)=504÷30=14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
10.一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
解題思路:
火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。
答題:
解:(600+1150)÷700=1750÷700=2.5(分)
答:火車通過隧道需2.5分。