世界一流潛能大師博恩•崔西說:“潛意識的力量比表意識大三萬倍”。追逐高考,我們向往成功,我們希望激發(fā)潛能,我們就需要在心中鑄造一座高高矗立的、堅固無比的燈塔,它的名字叫信念。高二頻道為你整理了《人教版高二年級數(shù)學知識點》,助你一路向前!
【一】
單調性
⑴若導數(shù)大于零,則單調遞增;若導數(shù)小于零,則單調遞減;導數(shù)等于零為函數(shù)駐點,不一定為極值點。需代入駐點左右兩邊的數(shù)值求導數(shù)正負判斷單調性。
⑵若已知函數(shù)為遞增函數(shù),則導數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導數(shù)小于等于零。
根據(jù)微積分基本定理,對于可導的函數(shù),有:
如果函數(shù)的導函數(shù)在某一區(qū)間內恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內單調遞增(或單調遞減),這種區(qū)間也稱為函數(shù)的單調區(qū)間。導函數(shù)等于零的點稱為函數(shù)的駐點,在這類點上函數(shù)可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函數(shù)在附近的符號。對于滿足的一點,如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個極大值點,反之則為極小值點。
x變化時函數(shù)(藍色曲線)的切線變化。函數(shù)的導數(shù)值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。
凹凸性
可導函數(shù)的凹凸性與其導數(shù)的單調性有關。如果函數(shù)的導函數(shù)在某個區(qū)間上單調遞增,那么這個區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導函數(shù)存在,也可以用它的正負性判斷,如果在某個區(qū)間上恒大于零,則這個區(qū)間上函數(shù)是向下凹的,反之這個區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點稱為曲線的拐點。
【二】
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x↦f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
【一】
單調性
⑴若導數(shù)大于零,則單調遞增;若導數(shù)小于零,則單調遞減;導數(shù)等于零為函數(shù)駐點,不一定為極值點。需代入駐點左右兩邊的數(shù)值求導數(shù)正負判斷單調性。
⑵若已知函數(shù)為遞增函數(shù),則導數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導數(shù)小于等于零。
根據(jù)微積分基本定理,對于可導的函數(shù),有:
如果函數(shù)的導函數(shù)在某一區(qū)間內恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內單調遞增(或單調遞減),這種區(qū)間也稱為函數(shù)的單調區(qū)間。導函數(shù)等于零的點稱為函數(shù)的駐點,在這類點上函數(shù)可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函數(shù)在附近的符號。對于滿足的一點,如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個極大值點,反之則為極小值點。
x變化時函數(shù)(藍色曲線)的切線變化。函數(shù)的導數(shù)值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。
凹凸性
可導函數(shù)的凹凸性與其導數(shù)的單調性有關。如果函數(shù)的導函數(shù)在某個區(qū)間上單調遞增,那么這個區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導函數(shù)存在,也可以用它的正負性判斷,如果在某個區(qū)間上恒大于零,則這個區(qū)間上函數(shù)是向下凹的,反之這個區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點稱為曲線的拐點。
【二】
導數(shù)是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
對于可導的函數(shù)f(x),x↦f'(x)也是一個函數(shù),稱作f(x)的導函數(shù)。尋找已知的函數(shù)在某點的導數(shù)或其導函數(shù)的過程稱為求導。實質上,求導就是一個求極限的過程,導數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。