2018高一年級數(shù)學(xué)教案

字號:

學(xué)習(xí)是一個堅(jiān)持不懈的過程,走走停停便難有成就。比如燒開水,在燒到80度是停下來,等水冷了又燒,沒燒開又停,如此周而復(fù)始,又費(fèi)精力又費(fèi)電,很難喝到水。學(xué)習(xí)也是一樣,學(xué)任何一門功課,都不能只有三分鐘熱度,而要一鼓作氣,天天堅(jiān)持,久而久之,不論是狀元還是伊人,都會向你招手。高一頻道為正在努力學(xué)習(xí)的你整理了《2018高一年級數(shù)學(xué)教案》,希望對你有幫助!
    【一】
    學(xué)習(xí)目標(biāo)1.掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)
    2.掌握標(biāo)準(zhǔn)方程中的幾何意義
    3.能利用上述知識進(jìn)行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實(shí)際問題
    一、預(yù)習(xí)檢查
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點(diǎn)到它的一條漸近線的距離是.
    二、問題探究
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練
    1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識鞏固
    1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的大值為.
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    【二】
    學(xué)習(xí)目標(biāo)1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
    2.會根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
    3.會求拋物線的標(biāo)準(zhǔn)方程。
    一、預(yù)習(xí)檢查
    1.完成下表:
    標(biāo)準(zhǔn)方程
    圖形
    焦點(diǎn)坐標(biāo)
    準(zhǔn)線方程
    開口方向
    2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
    3.求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
    二、問題探究
    探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
    探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
    例1.已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
    例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
    例3.拋物線的頂點(diǎn)在原點(diǎn),對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
    三、思維訓(xùn)練
    1.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的橫坐標(biāo)為.
    2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
    3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
    4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
    5.(理)已知拋物線,有一個內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
    四、課后鞏固
    1.拋物線的準(zhǔn)線方程是.
    2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的距離為.
    3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
    4.經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
    5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
    6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對稱軸,過焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
    7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。